Catalytic conversion of CO 2 to chemicals and fuels is a "two birds, one stone" approach toward solving the climate change problem and energy demand−supply deficit in the modern world. Recent advances in mechanistic insights and design of suitable catalysts for direct thermocatalytic hydrogenation of CO 2 to C1 products are thoroughly discussed in this Review. The role of catalyst composition and process conditions in determining the selective pathways to various products like carbon monoxide, methanol, methane, and dimethyl ether has been overviewed in light of thermodynamic and kinetic considerations. After extensive elaboration of the main motivation of the reaction pathways, catalytic roles, and reaction thermodynamics, we summarize the most important macroscopic aspects of CO 2 hydrogenation technology development, which include reactor innovations, industrial status of the technology, life cycle assessment and technoeconomic analysis. Finally, a critical perspective on the future challenges and opportunities in both the core fronts and overall technology development is provided.
Electrochemical CO2 reduction reaction (eCO2RR) is performed on two intermetallic compounds formed by copper and gallium metals (CuGa2 and Cu9Ga4). Among them, CuGa2 selectively converts CO2 to methanol with remarkable Faradaic efficiency of 77.26% at an extremely low potential of −0.3 V vs RHE. The high performance of CuGa2 compared to Cu9Ga4 is driven by its unique 2D structure, which retains surface and subsurface oxide species (Ga2O3) even in the reduction atmosphere. The Ga2O3 species is mapped by X‐ray photoelectron spectroscopy (XPS) and X‐ray absorption fine structure (XAFS) techniques and electrochemical measurements. The eCO2RR selectivity to methanol are decreased at higher potential due to the lattice expansion caused by the reduction of the Ga2O3, which is probed by in situ XAFS, quasi in situ powder X‐ray diffraction, and ex situ XPS measurements. The mechanism of the formation of methanol is visualized by in situ infrared (IR) spectroscopy and the source of the carbon of methanol at the molecular level is confirmed from the isotope‐labeling experiments in presence of 13CO2. Finally, to minimize the mass transport limitations and improve the overall eCO2RR performance, a poly(tetrafluoroethylene)‐based gas diffusion electrode is used in the flow cell configuration.
Sunlight-driven CO2 hydrogenation has drawn tremendous attention. However, selective CH4 formation via CO2 photoreduction is very challenging. Herein, we report a metal oxide semiconductor heterojunction consisting of BiVO4 and WO3 as a photocatalyst for the efficient conversion of carbon dioxide (CO2) selectively to methane (105 μmol g–1 h–1) under visible light in the absence of a sacrificial agent. Wise selection of the reaction medium and the strategically tuned heterojunction upon strain relaxation suppresses the competitive hydrogen generation reaction. The detailed photophysical, photoelectrochemical, and X-ray absorption spectroscopy studies pointed to the Z-scheme mechanism of electron transfer, which favors superior electron and hole separation compared to the individual components of the composite catalyst and other well-known photocatalysts reported for CO2 reduction. The observations are further corroborated by experimental diffuse reflectance infrared Fourier transform spectroscopy and theoretical density-functional theory calculations, which reveal that the heterojunction has a lower free-energy barrier for CO2 conversion to CH4 due to the larger stabilization of the *CH2O intermediate on the strain-relaxed heterojunction surface, in comparison to the pristine BiVO4 surface. The present work provides fundamental insights for constructing high-performance heterojunction photocatalysts for the selective conversion of CO2 to desired chemicals and fuels.
The discovery of new materials for efficient transformation of carbon dioxide (CO 2 ) into desired fuel can revolutionize large-scale renewable energy storage and mitigate environmental damage due to carbon emissions. In this work, we discovered an operando generated stable Ni−In kinetic phase that selectively converts CO 2 to methanol (CTM) at low pressure compared to the state-of-the-art materials. The catalytic nature of a well-known methanation catalyst, nickel, has been tuned with the introduction of inactive indium, which enhances the CTM process. The remarkable change in the mechanistic pathways toward methanol production has been mapped by operando diffuse reflectance infrared Fourier transform spectroscopy analysis, corroborated by first-principles calculations. The ordered arrangement and pronounced electronegativity difference between metals are attributed to the complete shift in mechanism. The approach and findings of this work provide a unique advance toward the next-generation catalyst discovery for going beyond the state-of-the-art in CO 2 reduction technologies.
Increased level of CO2 in the atmosphere is identified as a threat to life on the planet earth. Since hydrogenation of CO2 back to fuel is identified as a major...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.