Catalytic conversion of CO 2 to chemicals and fuels is a "two birds, one stone" approach toward solving the climate change problem and energy demand−supply deficit in the modern world. Recent advances in mechanistic insights and design of suitable catalysts for direct thermocatalytic hydrogenation of CO 2 to C1 products are thoroughly discussed in this Review. The role of catalyst composition and process conditions in determining the selective pathways to various products like carbon monoxide, methanol, methane, and dimethyl ether has been overviewed in light of thermodynamic and kinetic considerations. After extensive elaboration of the main motivation of the reaction pathways, catalytic roles, and reaction thermodynamics, we summarize the most important macroscopic aspects of CO 2 hydrogenation technology development, which include reactor innovations, industrial status of the technology, life cycle assessment and technoeconomic analysis. Finally, a critical perspective on the future challenges and opportunities in both the core fronts and overall technology development is provided.
Hexagonal boron nitride (h-BN) has emerged as a strong candidate for twodimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of stateof-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.The ORCID identification number(s) for the author(s) of this article can be found under
As the price of renewable electricity continues to plummet, hydrogen (H2) production via water electrolysis is gaining momentum globally as a route to decarbonize our energy systems. The requirement of...
Hunger and chronic undernourishment impact over 800 million people, which translates to ≈10.7% of the world's population. While countries are increasingly making efforts to reduce poverty and hunger by pursuing sustainable energy and agricultural practices, a third of the food produced around the globe still is wasted and never consumed. Reducing food shortages is vital in this effort and is often addressed by the development of genetically modified produce or chemical additives and inedible coatings, which create additional health and environmental concerns. Herein, a multifunctional bio‐nanocomposite comprised largely of egg‐derived polymers and cellulose nanomaterials as a conformal coating onto fresh produce that slows down food decay by retarding ripening, dehydration, and microbial invasion is reported. The coating is edible, washable, and made from readily available inexpensive or waste materials, which makes it a promising economic alternative to commercially available fruit coatings and a solution to combat food wastage that is rampant in the world.
The development of novel efficient and robust electrocatalysts with sufficient active sites is one of the key parameters for hydrogen evolution reactions (HER) catalysis, which plays a key role in hydrogen production for clean energy harvesting. Recently, two-dimensional (2D) materials, especially those based upon transition metal dichalcogenides such as molybdenum disulfide (MoS2), have gained attention for the catalysis of hydrogen production because of their exceptional properties. Innovative strategies have been developed to engineer these material systems for improvements in their catalytic activity. Toward this aim, the facile growth of MoS2 clusters by sulfurization of molybdenum dioxide (MoO2) particles supported on reduced graphene oxide (rGO) foams using the chemical vapor deposition (CVD) method is reported. This approach created various morphologies of MoS2 with large edges and defect densities on the basal plane of rGO supported MoS2 structures, which are considered as active sites for HER catalysis. In addition, MoS2 nanostructures on the surface of the porous rGO network show robust physical interactions, such as van der Waals and π–π interactions between MoS2 and rGO. These features result in an improved process to yield a suitable HER catalyst. In order to gain a better understanding of the improvement of this MoS2-based HER catalyst, fully atomistic molecular dynamics (MD) simulations of different defect geometries were also performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.