Recent state-of-the-art performance on human-body pose estimation has been achieved with Deep Convolutional Networks (ConvNets). Traditional ConvNet architectures include pooling and sub-sampling layers which reduce computational requirements, introduce invariance and prevent over-training. These benefits of pooling come at the cost of reduced localization accuracy. We introduce a novel architecture which includes an efficient 'position refinement' model that is trained to estimate the joint offset location within a small region of the image. This refinement model is jointly trained in cascade with a state-of-the-art ConvNet model [21] to achieve improved accuracy in human joint location estimation. We show that the variance of our detector approaches the variance of human annotations on the FLIC [20] dataset and outperforms all existing approaches on the MPII-human-pose dataset [1].
State-of-the-art methods for human detection and pose estimation require many training samples for best performance. While large, manually collected datasets exist, the captured variations w.r.t. appearance, shape and pose are often uncontrolled thus limiting the overall performance. In order to overcome this limitation we propose a new technique to extend an existing training set that allows to explicitly control pose and shape variations. For this we build on recent advances in computer graphics to generate samples with realistic appearance and background while modifying body shape and pose. We validate the effectiveness of our approach on the task of articulated human detection and articulated pose estimation. We report close to state of the art results on the popular Image Parsing [25] human pose estimation benchmark and demonstrate superior performance for articulated human detection. In addition we define a new challenge of combined articulated human detection and pose estimation in real-world scenes.
3D human pose estimation from a single image is a challenging problem, especially for in-the-wild settings due to the lack of 3D annotated data. We propose two anatomically inspired loss functions and use them with the weaklysupervised learning framework of [41] to jointly learn from large-scale in-thewild 2D and indoor/synthetic 3D data. We also present a simple temporal network that exploits temporal and structural cues present in predicted pose sequences to temporally harmonize the pose estimations. We carefully analyze the proposed contributions through loss surface visualizations and sensitivity analysis to facilitate deeper understanding of their working mechanism. Our complete pipeline improves the state-of-the-art by 11.8% and 12% on Human3.6M and MPI-INF-3DHP, respectively, and runs at 30 FPS on a commodity graphics card.
Many motion detection and tracking algorithms rely on the process of background subtraction, a technique which detects changes from a model of the background scene. We present a new algorithm for the purpose of background model initialization. The algorithm takes as input a video sequence in which moving objects are present, and outputs a statistical background model describing the static parts of the scene. Multiple hypotheses of the background value at each pixel are generated by locating periods of stable intensity in the sequence. The likelihood of each hypothesis is then evaluated using optical flow information from the neighborhood around the pixel, and the most likely hypothesis is chosen to represent the background. Our results are compared with those of several standard background modeling techniques using surveillance video of humans in indoor environments.
We present a novel method for accurate marker-less capture of articulated skeleton motion of several subjects in general scenes, indoors and outdoors, even from input filmed with as few as two cameras. Our approach unites a discriminative image-based joint detection method with a model-based generative motion tracking algorithm through a combined pose optimization energy. The discriminative part-based pose detection method, implemented using Convolutional Networks (ConvNet), estimates unary potentials for each joint of a kinematic skeleton model. These unary potentials are used to probabilistically extract pose constraints for tracking by using weighted sampling from a pose posterior guided by the model. In the final energy, these constraints are combined with an appearance-based model-to-image similarity term. Poses can be computed very efficiently using iterative local optimization, as Con-vNet detection is fast, and our formulation yields a combined pose estimation energy with analytic derivatives. In combination, this enables to track full articulated joint angles at state-of-the-art accuracy and temporal stability with a very low number of cameras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.