Generation Z is a data-driven generation. Everyone has the entirety of humanity’s knowledge in their hands. The technological possibilities are endless. However, we use and misuse this blessing to face swap using deepfake. Deepfake is an emerging subdomain of artificial intelligence technology in which one person’s face is overlaid over another person’s face, which is very prominent across social media. Machine learning is the main element of deepfakes, and it has allowed deepfake images and videos to be generated considerably faster and at a lower cost. Despite the negative connotations associated with the phrase “deepfakes,” the technology is being more widely employed commercially and individually. Although it is relatively new, the latest technological advances make it more and more challenging to detect deepfakes and synthesized images from real ones. An increasing sense of unease has developed around the emergence of deepfake technologies. Our main objective is to detect deepfake images from real ones accurately. In this research, we implemented several methods to detect deepfake images and make a comparative analysis. Our model was trained by datasets from Kaggle, which had 70,000 images from the Flickr dataset and 70,000 images produced by styleGAN. For this comparative study of the use of convolutional neural networks (CNN) to identify genuine and deepfake pictures, we trained eight different CNN models. Three of these models were trained using the DenseNet architecture (DenseNet121, DenseNet169, and DenseNet201); two were trained using the VGGNet architecture (VGG16, VGG19); one was with the ResNet50 architecture, one with the VGGFace, and one with a bespoke CNN architecture. We have also implemented a custom model that incorporates methods like dropout and padding that aid in determining whether or not the other models reflect their objectives. The results were categorized by five evaluation metrics: accuracy, precision, recall, F1-score, and area under the ROC (receiver operating characteristic) curve. Amongst all the models, VGGFace performed the best, with 99% accuracy. Besides, we obtained 97% from the ResNet50, 96% from the DenseNet201, 95% from the DenseNet169, 94% from the VGG19, 92% from the VGG16, 97% from the DenseNet121 model, and 90% from the custom model.
As the world shrinks into a global village, software development processes seek cooperation from multiple teams that are spread across the globe and possess their own unique capabilities and skills. Studies indicate that the Collaborative Software Development model has several advantages such as increased productivity and cost efficiency. However, it also poses the challenge of coordination and task assignment between dispersed and heterogeneous teams. In this paper, we propose a Formal Concept Analysis based model for skills oriented mapping between disparate teams and a set of software development tasks within a distributed and collaborative software development environment in a manner that is efficient, economical and fault-tolerant. Concepts extracted in the form of teams exhibiting common skills and software development tasks requiring specific skills are matched by using an extended version of the Stable Marriage Problem. The stable pairs so obtained are subsequently pruned with the objective of either minimizing the cost of allocation or maximizing the continuity of tasks. We also assess the redundancy for each task. Experimental results demonstrate the efficacy of our approach.
Rapid technological advancements are altering people’s communication styles. With the growth of the Internet, social networks (Twitter, Facebook, Telegram, and Instagram) have become popular forums for people to share their thoughts, psychological behavior, and emotions. Psychological analysis analyzes text and extracts facts, features, and important information from the opinions of users. Researchers working on psychological analysis rely on social networks for the detection of depression-related behavior and activity. Social networks provide innumerable data on mindsets of a person’s onset of depression, such as low sociology and activities such as undergoing medical treatment, a primary emphasis on oneself, and a high rate of activity during the day and night. In this paper, we used five machine learning classifiers—decision trees, K-nearest neighbor, support vector machines, logistic regression, and LSTM—for depression detection in tweets. The dataset is collected in two forms—balanced and imbalanced—where the oversampling of techniques is studied technically. The results show that the LSTM classification model outperforms the other baseline models in the depression detection healthcare approach for both balanced and imbalanced data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.