The present study was aimed at investigating the coexistence and interactions between free living amoebae of Naegleria and Hartmannella genera and pathogenic Legionella pneumophila bacteria in thermal saline baths used in balneotherapy in central Poland. Water samples were collected from November 2010 to May 2011 at intervals longer than 1 month. The microorganisms were detected with the use of a very sensitive fluorescence in situ hybridisation method. In addition, the morphology of the amoebae was studied. Despite relatively high salinity level, ranging from 1.5 to 5.0 %, L. pneumophila were found in all investigated baths, although their number never exceeded 106 cells dm−3. Hartmannella were not detected, while Naegleria fowleri were found in one bath. The observation that N. fowleri and L. pneumophila may coexist in thermal saline baths is the first observation emphasising potential threat from these microorganisms in balneotherapy.
Abstract. The article presents the influence of natural and anthropogenic factors on the chemical and physical properties of surface water and groundwater in the area of the city of Inowrocław. It has been shown that the properties of the waters were most strongly affected by the specific geological structure (the city is located within the Zechstein salt dome) as well as the long-term influence of a salt mine and soda plant. The composition of most analysed samples was dominated by Ca 2+, Na + and Cl -ions. In places of heavy industrial activity, some water parameters were several time higher than permissible limit values according to Polish standards. It is concluded that, due to the threat to the city's drinking groundwater resources and fertile soils, the surface water and groundwater in the area in question require permanent monitoring.
Intraterrestrial waters harbor microbial communities being extensively studied to understand microbial processes underlying subsurface ecosystem functioning. This paper provides the results of an investigation on the microbiomes of unique, subsurface sulfidic waters associated with Upper Jurassic, Cretaceous, and Miocene sediments. We used high-throughput 16S rDNA amplicon sequencing to reveal the structure of bacterial and archaeal communities in water samples differing in sulfide content (20–960 mg/dm 3 ), salinity (1.3–3.2%), and depth of extraction (60–660 m below ground level). Composition of the bacterial communities strongly varied across the samples; however, the bacteria participating in the sulfur cycle were common in all sulfidic waters. The shallowest borehole water (60 m bgl) was dominated by sulfur-oxidizing Epsilonproteobacteria ( Sulfurimonas , Sulfurovum ). In the waters collected from greater depths (148–300 m bgl), the prevalence of Betaproteobacteria ( Comamonadaceae ) and sulfate/sulfur-reducing Deltaproteobacteria ( Desulfopila , Desulfomicrobium , MSBL7 ) was observed. Sulfate reducers (members of Clostridia : Candidatus Desulforudis ) were the most abundant bacteria in the deepest borehole water (660 m bgl). Out of 850 bacterial OTUs, only one, affiliated with the Comamonadaceae family, was found abundant (> 1% of total bacterial sequences) in all samples. Contribution of Archaea to the whole microbial communities was lower than 0.5%. Archaeal communities did not differ across the samples and they consisted of Halobacteriaceae . Out of 372 archaeal OTUs, five, belonging to the four genera Natronomonas , Halorubrum , Halobellus , and Halorhabdus , were the most numerous. Electronic supplementary material The online version of this article (10.1007/s00248-018-1270-5) contains supplementary material, which is available to authorized users.
This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 107 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.Electronic supplementary materialThe online version of this article (10.1007/s00792-017-0992-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.