translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abstract. First, this article considers the nature of quantum reality (the reality responsible for quantum phenomena) and the concept of realism (our ability to represent this reality) in quantum theory, in conjunction with the roles of locality, causality, and probability and statistics there. Second, it offers two interpretations of quantum mechanics, developed by the authors of this article, the second of which is also a different (from quantum mechanics) theory of quantum phenomena. Both of these interpretations are statistical. The first interpretation, by A. Plotnitsky, "the statistical Copenhagen interpretation," is nonrealist, insofar as the description or even conception of the nature of quantum objects and processes is precluded. The second, by A. Khrennikov, is ultimately realist, because it assumes that the quantum-mechanical level of reality is underlain by a deeper level of reality, described, in a realist fashion, by a model, based in the pre-quantum classical statistical field theory (PCSFT), the predictions of which reproduce those of quantum mechanics. Moreover, because the continuous fields considered in this model are transformed into discrete clicks of detectors, experimental outcomes in this model depend on the context of measurement in accordance with N. Bohr's interpretation and the statistical Copenhagen interpretation, which coincides with N. Bohr's interpretation in this regard.
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.