In this paper we present an all-optical approach allowing the realization of logic gates and other building blocks of a processing unit. The modules have dimensions of only few microns, operation rate of tens of Tera Hertz, low power consumption and high energetic efficiency. The operation principle is based upon construction of unconventional wave guiding nano-photonic structures which do not include non-linear materials or interactions. The devices developed and presented in this paper include logic diffractive phase detector, generalized diffractive phase detector, logic gates as AND, OR and NOT, amplitude modulator and analog adder/subtractor.
We introduce a novel all-optical logic architecture whereby the gates may be readily reconfigured to reprogram their logic to implement (N)AND/(N)OR/X(N)OR. A single gate structure may be used throughout the logic circuit to implement multiple truth tables. The reconfiguration is effected by an optical reference signal. The reference may also be adapted to an arbitrary Boolean complex alphabet at the gate logic inputs and calibrated to correct gate imperfections. The all-optical gate structure is partitioned into a linear interferometric front end and a nonlinear back end. In the linear section, two optical logic inputs, along with a reference signal, linearly interfere. The nonlinear back end realizes a phase-erasure (or phase-reset) function. The reconfiguration and recalibration capabilities, along with the functional decoupling between the linear and nonlinear sections of each gate, facilitate the potential aggregation of large gate counts into logic arrays. A fundamental lower bound for the expended energy per gate is derived as 3hnu+kT ln2 Joules per bit.
We present an all-optical modulator realized on a silicon chip. The proposed modulator has nano scale dimensions and a high extinction ratio. Its operation principle is based on a spatially non-uniform variation of the absorption of a miniaturized, silicon waveguide - based Mach-Zehnder interferometer (MZI). The absorption variation is obtained by illuminating the MZI with visible light. Our modulator may be used as an interfacing link between microelectronic processing circuits and optical information transmission links. We provide details on the fabrication and the experimental characterization of the suggested device. Since the operation principle is not based on a high Finesse resonator, the modulator is less sensitive to wavelength changes and its operation rate is not connected to the time required for the optical response to reach steady state but rather to material related effects.
Feasibility of cascading and reconfiguring a pair of linear-nonlinear all-optical logic gate structures is experimentally demonstrated using RF photonics. Progress in highly integrated O/E/O repeaters over Si/InP hybrid platforms enables large-scale reconfigurable gate arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.