Ocean scientists have dreamed of and recently started to realize an ocean observing revolution with autonomous observing platforms and sensors. Critical questions to be answered by such autonomous systems are where, when, and what to sample for optimal information, and how to optimally reach the sampling locations. Definitions, concepts, and progress towards answering these questions using quantitative predictions and fundamental principles are presented. Results in reachability and path planning, adaptive sampling, machine learning, and teaming machines with scientists are overviewed. The integrated use of differential equations and theory from varied disciplines is emphasized. The results provide an inference engine and knowledge base for expert autonomous observing systems. They are showcased using a set of recent at-sea campaigns and realistic simulations. Real-time experiments with identical autonomous underwater vehicles (AUVs) in the Buzzards Bay and Vineyard Sound region first show that our predicted time-optimal paths were faster than shortest distance paths. Deterministic and probabilistic reachability and path forecasts issued and validated for gliders and floats in the northern Arabian Sea are then presented. Novel Bayesian adaptive sampling for hypothesis testing and optimal learning are finally shown to forecast the observations most informative to estimate the accuracy of model formulations, the values of ecosystem parameters and dynamic fields, and the presence of Lagrangian Coherent Structures.
PySPH is an open-source, Python-based, framework for particle methods in general and Smoothed Particle Hydrodynamics (SPH) in particular. PySPH allows a user to define a complete SPH simulation using pure Python. High-performance code is generated from this high-level Python code and executed on either multiple cores, or on GPUs, seamlessly. It also supports distributed execution using MPI. PySPH supports a wide variety of SPH schemes and formulations. These include, incompressible and compressible fluid flow, elastic dynamics, rigid body dynamics, shallow water equations, and other problems. PySPH supports a variety of boundary conditions including mirror, periodic, solid wall, and inlet/outlet boundary conditions. The package is written to facilitate reuse and reproducibility. This article discusses the overall design of PySPH and demonstrates many of its features. Several example results are shown to demonstrate the range of features that PySPH provides.
Hamiltonian learning is an important procedure in quantum system identification, calibration, and successful operation of quantum computers. Through queries to the quantum system, this procedure seeks to obtain the parameters of a given Hamiltonian model and description of noise sources. Standard techniques for Hamiltonian learning require careful design of queries and O( −2 ) queries in achieving learning error due to the standard quantum limit. With the goal of efficiently and accurately estimating the Hamiltonian parameters within learning error through minimal queries, we introduce an active learner that is given an initial set of training examples and the ability to interactively query the quantum system to generate new training data. We formally specify and experimentally assess the performance of this Hamiltonian active learning (HAL) algorithm for learning the six parameters of a two-qubit cross-resonance Hamiltonian on four different superconducting IBM Quantum devices. Compared with standard techniques for the same problem and a specified learning error, HAL achieves up to a 99.8% reduction in queries required, and a 99.1% reduction over the comparable non-adaptive learning algorithm. Moreover, with access to prior information on a subset of Hamiltonian parameters and given the ability to select queries with linearly (or exponentially) longer system interaction times during learning, HAL can exceed the standard quantum limit and achieve Heisenberg (or super-Heisenberg) limited convergence rates during learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.