Purpose-The assessment of both left (LV) and right ventricular (RV) motion is important to understand the impact of heart disease on cardiac function. The MRI technique of tissue phase mapping (TPM) allows for the quantification of regional biventricular three-directional myocardial velocities. The goal of this study was to establish normal LV and RV velocity parameters across a wide range of pediatric to adult ages and to investigate the feasibility of TPM for detecting impaired regional biventricular function in patients with repaired tetralogy of Fallot (TOF). Methods-36 healthy controls (age=1-75 years) and 12 TOF patients (age=5-23 years) underwent cardiac MRI including TPM in short-axis locations (base, mid, apex). For ten adults, a second TPM scan was used to assess test-retest reproducibility. Data analysis included the calculation of biventricular radial, circumferential, and long-axis velocity components, quantification of systolic and diastolic peak velocities in an extended 16+10 LV+RV segment model, and assessment of inter-ventricular dyssynchrony.
Background-Hypertrophic cardiomyopathy (HCM) is associated with heart failure, atrial fibrillation and sudden death. Reduced myocardial function has been reported in HCM despite normal left ventricular (LV) ejection fraction. Additionally, LV fibrosis is associated with elevated T1 and might be an outcome predictor.Objective-To systematically compare tissue phase mapping and feature tracking for assessing regional LV function in children and young adults with HCM and pediatric controls, and to evaluate structure-function relationships among myocardial velocities, LV wall thickness and myocardial T1.Materials and methods-Seventeen pediatric patients with HCM and 21 age-matched controls underwent cardiac MRI including standard cine imaging, tissue phase mapping (two-dimensional cine phase contrast with three-directional velocity encoding), and modified Look-Locker inversion Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. http://www.springer.com/gb/openaccess/authors-rights/aam-terms-v1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.