Ethylene plays a crucial role in various biological processes and therefore its biosynthesis is strictly regulated by multiple mechanisms. Posttranslational regulation, which is pivotal in controlling ethylene biosynthesis, impacts 1-aminocyclopropane 1-carboxylate synthase (ACS) protein stability via the complex interplay of specific factors. Here, we show that the Arabidopsis thaliana protein phosphatase type 2C, ABI1, a negative regulator of abscisic acid signaling, is involved in the regulation of ethylene biosynthesis under oxidative stress conditions. We found that ABI1 interacts with ACS6 and dephosphorylates its C-terminal fragment, a target of the stress-responsive mitogen-activated protein kinase, MPK6. In addition, ABI1 controls MPK6 activity directly and by this means also affects the ACS6 phosphorylation level. Consistently with this, ozone-induced ethylene production was significantly higher in an ABI1 knockout strain (abi1td) than in wild-type plants. Importantly, an increase in stress-induced ethylene production in the abi1td mutant was compensated by a higher ascorbate redox state and elevated antioxidant activities. Overall, the results of this study provide evidence that ABI1 restricts ethylene synthesis by affecting the activity of ACS6. The ABI1 contribution to stress phenotype underpins its role in the interplay between the abscisic acid (ABA) and ethylene signaling pathways.
Seeds enable plant survival in harsh environmental conditions, and via seeds, genetic information is transferred from parents to the new generation; this stage provides an opportunity for sessile plants to settle in new territories. However, seed viability decreases over long-term storage due to seed aging. For the effective conservation of gene resources, e.g., in gene banks, it is necessary to understand the causes of decreases in seed viability, not only where the aging process is initiated in seeds but also the sequence of events of this process. Mitochondria are the main source of reactive oxygen species (ROS) production, so they are more quickly and strongly exposed to oxidative damage than other organelles. The mitochondrial antioxidant system is also less active than the antioxidant systems of other organelles, thus such mitochondrial ‘defects’ can strongly affect various cell processes, including seed aging, which we discuss in this paper.
The aim of this study was to analyze whether polyamine (PA) metabolism is involved in dark-induced Hordeum vulgare L. ‘Nagrad’ leaf senescence. In the cell, the titer of PAs is relatively constant and is carefully controlled. Senescence-dependent increases in the titer of the free PAs putrescine, spermidine, and spermine occurred when the process was induced, accompanied by the formation of putrescine conjugates. The addition of the anti-senescing agent cytokinin, which delays senescence, to dark-incubated leaves slowed the senescence-dependent PA accumulation. A feature of the senescence process was initial accumulation of PAs at the beginning of the process and their subsequent decrease during the later stages. Indeed, the process was accompanied by both enhanced expression of PA biosynthesis and catabolism genes and an increase in the activity of enzymes involved in the two metabolic pathways. To confirm whether the capacity of the plant to control senescence might be linked to PA, chlorophyll fluorescence parameters, and leaf nitrogen status in senescing barley leaves were measured after PA catabolism inhibition and exogenously applied γ-aminobutyric acid (GABA). The results obtained by blocking putrescine oxidation showed that the senescence process was accelerated. However, when the inhibitor was applied together with GABA, senescence continued without disruption. On the other hand, inhibition of spermidine and spermine oxidation delayed the process. It could be concluded that in dark-induced leaf senescence, the initial accumulation of PAs leads to facilitating their catabolism. Putrescine supports senescence through GABA production and spermidine/spermine supports senescence-dependent degradation processes, is verified by H2O2 generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.