Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health.
Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput
Three novel Gram-positive, aerobic, actinobacterial strains, CF5/2(T), CF5/1 and CF7/1, were isolated in 2007 during environmental screening of arid desert soil in the Sahara desert, Chad. Results from riboprinting, MALDI-TOF protein spectra and 16S rRNA sequence analysis confirmed that all three strains belonged to the same species. Phylogenetic analysis of 16S rRNA sequences with the strains' closest relatives indicated that they represented a distinct species. The three novel strains also shared a number of physiological and biochemical characteristics distinct from previously named Geodermatophilus species. The novel strains' peptidoglycan contained meso-diaminopimelic acid; their main phospholipids were phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and a small amount of phosphatidylglycerol; MK-9(H4) was the dominant menaquinone. The major cellular fatty acids were the branched-chain saturated acids iso-C16:0 and iso-C15:0. Galactose was detected as diagnostic sugar. Based on these chemotaxonomic results, 16S rRNA gene sequence analysis and DNA-DNA hybridization between strain CF5/2(T) and the type strains of Geodermatophilus saharensis, Geodermatophilus arenarius, Geodermatophilus nigrescens, Geodermatophilus telluris and Geodermatophilus siccatus, the isolates CF5/2(T), CF5/1 and CF7/1 are proposed to represent a novel species, Geodermatophilus tzadiensis, with type strain CF5/2(T)=DSM 45416=MTCC 11411 and two reference strains, CF5/1 (DSM 45415) and CF7/1 (DSM 45420).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.