The random key graph is a random graph naturally associated with the random key predistribution scheme introduced by Eschenauer and Gligor in the context of wireless sensor networks. For this class of random graphs we establish a new version of a conjectured zero-one law for graph connectivity as the number of nodes becomes unboundedly large. The results reported here complement and strengthen recent work on this conjecture by Blackburn and Gerke. In particular, the results are given under conditions which are more realistic for applications to wireless sensor networks.
A simple queueing system, known as the fork-join queue, is considered with basic performance measure defined as the delay between the fork and join dates. Simple lower and upper bounds are derived for some of the statistics of this quantity. They are obtained, in both transient and steady-state regimes, by stochastically comparing the original system to other queueing systems with a structure simpler than the original system, yet with identical stability characteristics. In steady-state, under renewal assumptions, the computation reduces to standard GI/GI/1 calculations and the bounds constitute a first sizing-up of system performance. These bounds can also be used to show that for homogeneous fork-join queue system under assumptions, the moments of the system response time grow logarithmically in the number of parallel processors provided the service time distribution has rational Laplace–Stieltjes transform. The bounding arguments combine ideas from the theory of stochastic ordering with the notion of associated random variables, and are of independent interest to study various other queueing systems with synchronization constraints. The paper is an abridged version of a more complete report on the matter [6].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.