SummaryGlutamate transporters remove the excitatory neurotransmitter glutamate from the extracellular space after neurotransmission is complete, by taking glutamate up into neurons and glia cells. As thermodynamic machines, these transporters can also run in reverse, releasing glutamate into the extracellular space. Because glutamate is excitotoxic, this transporter-mediated release is detrimental to the health of neurons and axons, and it, thus, contributes to the brain damage that typically follows a stroke. This review highlights current ideas about the molecular mechanisms underlying glutamate uptake and glutamate reverse transport. It also discusses the implications of transporter-mediated glutamate release for cellular function under physiological and patho-physiological conditions.2008 IUBMB IUBMB Life, 60(9): 609-619, 2008
The plasma membrane transporters for the neurotransmitter glutamate belong to the solute carrier 1 (SLC1) family. They are secondary active transporters, taking up glutamate into the cell against a substantial concentration gradient. The driving force for concentrative uptake is provided by the cotransport of Na+ ions and the countertransport of one K+ in a step independent of the glutamate translocation step. Due to eletrogenicity of transport, the transmembrane potential can also act as a driving force. Glutamate transporters are expressed in many tissues, but are of particular importance in the brain, where they contribute to the termination of excitatory neurotransmission. Glutamate transporters can also run in reverse, resulting in glutamate release from cells. Due to these important physiological functions, glutamate transporter expression and, therefore, the transport rate, are tightly regulated. This review summarizes recent literature on the functional and biophysical properties, structure-function relationships, regulation, physiological significance, and pharmacology of glutamate transporters. Particular emphasis is on the insight from rapid kinetic and electrophysiological studies, transcriptional regulation of transporter expression, and reverse transport and its importance for pathophysiological glutamate release under ischemic conditions.
Nicotinic acetylcholine receptors (AChR) belong to a family of proteins that form ligand-gated transmembrane ion channels. They are involved in the fast transmission of signals between cells and the control of intercellular communication in the nervous system. A variety of therapeutic agents and abused drugs, including cocaine, inhibit the AChR and monoamine transporters and interfere with nervous system function. Here we describe a mechanism-based approach to prevent this inhibition. We had previously developed presteady-state kinetic (transient kinetic) techniques, with microsecond-to-millisecond time resolutions, for investigations of reactions on cell surfaces that allow one to determine the effects of inhibitors not only on the channel-opening probability but also on the opening and closing rates of the AChR channel. The transient kinetic measurements led to two predictions. T he nicotinic acetylcholine receptor (AChR) is the prototypical member of a family of structurally related membrane proteins, the ligand-gated ion channels (1). These proteins regulate intercellular communication between the approximately 10 12 cells of the mammalian nervous system, a process considered essential for brain function (2). Many therapeutic agents and abused drugs affect their function (3). For instance, the AChR is inhibited by the anticonvulsant MK-801 [(ϩ)Ϫdizocilpine] (4-6) and by several abused drugs, including cocaine (7-9). Cocaine affects more than three million people annually in the United States alone, at an estimated cost to society of more than 100 billion dollars.Understanding the mechanism of the AChR and its inhibition is a longstanding and challenging problem (10) with major implications for medicine and drug addiction (11-12). Two decades ago, single-channel current-recording (13) measurements led to the proposal of a simple and generally accepted mechanism in which inhibitors enter the open channel and block it (14-17) (the channel-blocking mechanism, Mechanism A in Fig. 1). Although several variations of this open-channelblocking mechanism have been proposed, including the conversion of an inhibitor-bound closed-channel conformation to a blocked open-channel form (18-21) (Mechanism B, Fig. 1), the open-channel-blocking mechanism, based mainly on singlechannel current or other steady-state kinetic measurements (14-21), has met the test of time during the last 20 years. In the techniques used for those measurements, the channel-activating ligand is in quasi equilibrium (steady state) with the receptor. The question we asked was: Can additional information about the receptor-mediated reactions be obtained by using presteadystate kinetic techniques? Recently, presteady-state kinetic techniques that are suitable for measuring receptor-mediated reactions on cell surfaces in the millisecond-to-microsecond time region were developed (22-31). The time resolution of the laser-pulse photolysis technique (23-26) is sufficient to investigate the reaction before the channel has opened. One can, therefore, obtain info...
The Alanine-Serine-Cysteine transporter ASCT2 (SLC1A5) is a membrane protein that transports neutral amino acids into cells in exchange for outward movement of intracellular amino acids. ASCT2 is highly expressed in peripheral tissues such as the lung and intestines where it contributes to the homeostasis of intracellular concentrations of neutral amino acids. ASCT2 also plays an important role in the development of a variety of cancers such as melanoma by transporting amino acid nutrients such as glutamine into the proliferating tumors. Therefore, ASCT2 is a key drug target with potentially great pharmacological importance. Here, we identify seven ASCT2 ligands by computational modeling and experimental testing. In particular, we construct homology models based on crystallographic structures of the aspartate transporter GltPh in two different conformations. Optimization of the models’ binding sites for protein-ligand complementarity reveals new putative pockets that can be targeted via structure-based drug design. Virtual screening of drugs, metabolites, fragments-like, and lead-like molecules from the ZINC database, followed by experimental testing of 14 top hits with functional measurements using electrophysiological methods reveals seven ligands, including five activators and two inhibitors. For example, aminooxetane-3-carboxylate is a more efficient activator than any other known ASCT2 natural or unnatural substrate. Furthermore, two of the hits inhibited ASCT2 mediated glutamine uptake and proliferation of a melanoma cancer cell line. Our results improve our understanding of how substrate specificity is determined in amino acid transporters, as well as provide novel scaffolds for developing chemical tools targeting ASCT2, an emerging therapeutic target for cancer and neurological disorders.
The neutral amino acid transporter alanine-serine-cysteine transporter 2 (ASCT2) belongs to the solute carrier 1 (SLC1) family of solute transporters and transports small, neutral amino acids across the membrane, including the physiologically important and ubiquitous amino acid glutamine. Our understanding of the involvement of ASCT2 in the physiological processes involving glutamine is hampered by a lack of understanding of its pharmacology and the absence of high-affinity inhibitors. In this study, we combined an in silico docking approach with experimental investigation of binding parameters to develop new ASCT2 inhibitors and substrates, a series of serine esters, and to determine structural parameters that govern their functional effects. The series of compounds was synthesized using standard methods and exhibited a range of properties, from inhibitors to partial substrates and full substrates. Our results suggest that amino acid derivatives with small side-chain volume and low side-chain hydrophobicity interact strongly with the closed-loop form of the binding site, in which re-entrant loop 2, the presumed extracellular gate for the substrate binding site, is closed off. However, these derivatives bind weakly to the open-loop form (external gate open to the extracellular side), acting as transported substrates. In contrast, inhibitors bind preferentially to the open-loop form. An aromatic residue in the side chain is required for high-affinity interaction. One of the compounds, the L-serine ester serine biphenyl-4-carboxylate reversibly inhibits ASCT2 function with an apparent affinity of 30 M.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.