Variability in seeds' physicochemical characteristics, germination and seedling growth within and between twoFrench Populus nigra L. populations, Peer Community Journal, 2: e10.
Vegetative propagation opens opportunities for the multiplication of elite tree progeny for forest regeneration material. For conifers such as Norway spruce (Picea abies) the most efficient vegetative propagation method is seed multiplication through somatic embryogenesis. Efficient culture methods are needed for somatic embryogenesis to be commercially viable. Compared to culturing as clumps, filter disc cultures can improve the proliferation of embryogenic tissue (ET) due to more even spread and better developmental synchronization. In this study, ET proliferation on filter discs was compared to proliferation as clumps. The study comprised 28 genotypes in four trials. The benefits of adding a pre-maturation step and the selection of fresh ET for the subculture were evaluated. Pre-maturation on hormone-free media before maturation did not significantly improve embryo yield but improved greenhouse survival from 69% to 80%, although there was high variation between lines. Filter disc cultivation of ET did result in better growth than in clumps but was more dependent on ET selection and the amount of ET than the clump cultivation method. Filter proliferation also favors certain lines. Post-maturation storage can be used to change the storage compound composition of the produced mature embryos. The embryo storage compound profile was analyzed after post-maturation cold storage treatments of 0, 4, 8, 31, and 61 weeks and compared to that of the zygotic embryos. Cold storage made the storage compound profile of somatic embryos closer to that of zygotic embryos, especially regarding the raffinose family oligosaccharides and storage proteins. Sucrose, hexose, and starch content remained higher in somatic embryos even through cold storage. Prolonged storage appeared less beneficial for embryos, some of which then seemed to spontaneously enter the germination process.
The morphology of somatic embryos (SE) is not a sufficient criterion to determine the level of maturation and the optimal stage to transfer embryos for germination, unlike the biochemical components. This composition characterization in the laboratory is too restrictive to be considered at each maturation cycle, as would be necessary. It is, therefore, essential to consider alternative methods. The objectives of this work were to achieve a complete biochemical characterization of the embryos during their development, to serve as a reference and develop a characterization based on infrared spectrometry and chemometrics. During the precotyledonary stage (0–3 weeks of maturation), water content and glucose and fructose levels were high, which is consistent with SE development. After 4 weeks, the cotyledonary SE had a metabolism oriented towards the storage accumulation of lipids, proteins and starch, whereas raffinose only appeared from 8 weeks. Mid‐infrared calibration models were developed for water, proteins, lipids, carbohydrates, glucose, fructose, inositols, raffinose, stachyose and starch contents with an r2 average of 0.84. A model was also developed to discriminate the weeks of SE maturation. Different classes of age were discriminated with at least 72% of accuracy. Infrared analysis of the SE based on their full biochemical spectral fingerprint revealed a very slight variation in composition between 7 and 9 weeks, information that is very difficult to obtain by conventional analysis methods. These results provide novel insights into the maturation of conifer SE and indicate that mid‐infrared spectrometry could be an easy and effective method for SE characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.