We develop a method for the multifractal characterization of nonstationary
time series, which is based on a generalization of the detrended fluctuation
analysis (DFA). We relate our multifractal DFA method to the standard partition
function-based multifractal formalism, and prove that both approaches are
equivalent for stationary signals with compact support. By analyzing several
examples we show that the new method can reliably determine the multifractal
scaling behavior of time series. By comparing the multifractal DFA results for
original series to those for shuffled series we can distinguish multifractality
due to long-range correlations from multifractality due to a broad probability
density function. We also compare our results with the wavelet transform
modulus maxima (WTMM) method, and show that the results are equivalent.Comment: 14 pages (RevTex) with 10 figures (eps
We examine the Detrended Fluctuation Analysis (DFA), which is a well-established method for the detection of long-range correlations in time series. We show that deviations from scaling that appear at small time scales become stronger in higher orders of DFA, and suggest a modified DFA method to remove them. The improvement is necessary especially for short records that are affected by non-stationarities. Furthermore, we describe how crossovers in the correlation behavior can be detected reliably and determined quantitatively and show how several types of trends in the data affect the different orders of DFA.
Healthy sleep consists of several stages: deep sleep, light sleep, and rapid eye movement (REM) sleep. Here we show that these sleep stages can be characterized and distinguished by correlations of heart rates separated by n beats. Using the detrended fluctuation analysis (DFA) up to fourth order we find that long-range correlations reminiscent to the wake phase are present only in the REM phase. In the non-REM phases, the heart rates are uncorrelated above the typical breathing cycle time, pointing to a random regulation of the heartbeat during non-REM sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.