SUMMARY
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule GranzymeB, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.
The adoptive transfer of CD19-specific chimeric antigen receptor engineered T cells (CAR T cells) resulted in encouraging clinical trials in indolent B-cell malignancies. However, they also show the limitations of this fascinating technology: CAR T cells can lead to even life-threatening off-tumor, on-target side effects if CAR T cells crossreact with healthy tissues. Here, we describe a novel modular universal CAR platform technology termed UniCAR that reduces the risk of on-target side effects by a rapid and reversible control of CAR T-cell reactivity. The UniCAR system consists of two components: (1) a CAR for an inert manipulation of T cells and (2) specific targeting modules (TMs) for redirecting UniCAR T cells in an individualized time- and target-dependent manner. UniCAR T cells can be armed against different tumor targets simply by replacement of the respective TM for (1) targeting more than one antigen simultaneously or subsequently to enhance efficacy and (2) reducing the risk for development of antigen-loss tumor variants under treatment. Here we provide ‘proof of concept' for retargeting of UniCAR T cells to CD33- and/or CD123-positive acute myeloid leukemia blasts in vitro and in vivo.
Owing to the more recent positive results with the anti-CD33 immunotoxin gemtuzumab ozogamicin, therapy against acute myeloid leukemias (AMLs) targeting CD33 holds many promises. Here, CD33 and CD123 expression on AML blasts was studied by flow cytometry in a cohort of 319 patients with detailed information on French–American–British/World Health Organization (FAB/WHO) classification, cytogenetics and molecular aberrations. AMLs of 87.8% express CD33 and would therefore be targetable with anti-CD33 therapies. Additionally, 9.4% of AMLs express CD123 without concomitant CD33 expression. Thus, nearly all AMLs could be either targeted via CD33 or CD123. Simultaneous presence of both antigens was observed in 69.5% of patients. Most importantly, even AMLs with adverse cytogenetics express CD33 and CD123 levels comparable to those with favorable and intermediate subtypes. Some patient groups with unfavorable alterations, such as FMS-related tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations, high FLT3-ITD mutant/wild-type ratios and monosomy 5 are even characterized by high expression of CD33 and CD123. In addition, blasts of patients with mutant nucleophosmin (NPM1) revealed significantly higher CD33 and CD123 expression pointing toward the possibility of minimal residual disease-guided interventions in mutated NPM1-positive AMLs. These results stimulate the development of novel concepts to redirect immune effector cells toward CD33- and CD123-expressing blasts using bi-specific antibodies or engineered T cells expressing chimeric antigen receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.