Inflammation is a devastating pathophysiological process during stroke, a devastating disease that is the second most common cause of death worldwide. Activation of the NOD-like receptor protein (NLRP3)-infammasome has been proposed to mediate inflammatory responses during ischemic stroke. Briefly, NLRP3 inflammasome activates caspase-1, which cleaves both pro-IL-1 and pro-IL-18 into their active pro-inflammatory cytokines that are released into the extracellular environment. Several NLRP3 inflammasome inhibitors have been promoted, including small molecules, type I interferon, micro RNAs, nitric oxide, and nuclear factor erythroid-2 related factor 2 (Nrf2), some of which are potentially efficacious clinically. This review will describe the structure and cellular signaling pathways of the NLRP3 inflammasome during ischemic stroke, and current evidence for NLRP3 inflammasome inhibitors.
Stem cells are unspecialized cells and excellent model in developmental biology and a promising approach to the treatment of disease and injury. In the last 30 years, pluripotent embryonic stem (ES) cells were established from murine and primate sources, and display indefinite replicative potential and the ability to differentiate to all three embryonic germ layers. Despite large efforts in many aspects of rodent and non-rodent pluripotent stem cell culture, a number of diverse challenges remain. Natural and synthetic small molecules (SMs) strategy has the potential to overcome these hurdles. Small molecules are typically fast and reversible that target specific signaling pathways, epigenetic processes and other cellular processes. Inhibition of the transforming growth factor-β (TGF-β/Smad) and fibroblast growth factor 4 (FGF4)/ERK signaling pathways by SB431542 and PD0325901 small molecules, respectively, known as R2i, enhances the efficiency of mouse, rat, and chicken pluripotent stem cells passaging from different genetic backgrounds. Therefore, the application of SM inhibitors of TGF-β and ERK1/2 with leukemia inhibitory factor (LIF) allows the cultivation of pluripotent stem cells in a chemically defined condition. In this review, we discuss recently emerging evidence that dual inhibition of TGF-β and FGF signaling pathways plays an important role in regulating pluripotency in both rodent and non-rodent pluripotent stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.