In this study, the desalination performance of Capacitive Deionization (CDI) and Membrane Capacitive Deionization (MCDI) was studied for a wide range of salt compositions. The comprehensive data collection for monovalent and divalent ions used in this work enabled us to understand better the competitive electrosorption of these ions both with and without ion-exchange membranes (IEMs). As expected, MCDI showed an enhanced salt adsorption and charge efficiency in comparison with CDI. However, the different electrosorption behavior of the former reveals that ion transport through the IEMs is a significant rate-controlling step in the desalination process. A sharper desorption peak is observed for divalent ions in MCDI, which can be attributed to a portion of these ions being temporarily stored within the IEMs, thus they are the first to leave the cell upon discharge. In addition to salt concentration, we monitored the pH of the effluent stream in CDI and MCDI and discuss the potential causes of these fluctuations. The dramatic pH change over one adsorption and desorption cycle in CDI (pH range of 3.5-10.5) can be problematic in a feed water containing components prone to scaling. The pH change, however, was much more limited in the case of MCDI for all salts.
Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.
Membrane Capacitive Deionization (MCDI) is an energy efficient, electrochemical desalination technology, in which ions are removed from a salty stream upon applying a constant voltage or current. The ions are stored in carbon electrodes and then released back into the stream by reversing the polarity. In this work, we aimed to assess the feasibility of using a brine stream to regenerate the MCDI unit in order to improve water recovery. We further aimed to determine the optimum residence time in the MCDI unit. To achieve these objectives, we first enhanced the ion transport model previously developed for MCDI by independently measuring the counter-ion and co-ion diffusion coefficients in the ion-exchange membranes. These experiments allowed for an asymmetric model of the MCDI unit where the voltage drop across the cation exchange membrane was greater than that across the anion exchange membrane. Using this revised model, we found that in batch operation, a brine to feed water concentration ratio of around two was optimum. In continuous operation, over 40% enhancement in water recovery could be achieved when the regeneration brine was partially recycled, but water productivity dropped. We further showed that the maximum desalination capacity did not increase beyond a critical residence time in the MCDI cell, while the water recovery decreased.
The effect of organic fouling on both capacitive deionization (CDI) and membrane capacitive deionization (MCDI) was studied using two model foulants, the sodium salt of alginic acid and humic acid. Fouling of the activated carbon electrodes in the CDI cell was significant. The salt adsorption fell to 75% and the charge efficiency to 90% of their initial values after 18 cycles of operation with 0.5 mM CaCl 2 and 60 mg L -1 of sodium alginate. Similarly, the salt adsorption fell to 70% and the charge efficiency to 65% of their initial values after 18 cycles of operation with 60 mg L -1 of humic acid. The effect on MCDI was much more limited with these two foulants. The ability to clean the CDI cell with alkali cleaning agents was also investigated.While this cleaning was effective in restoring the salt adsorption, the alkali solution caused erosion of the activated carbon electrode or its PVDF binder, evidenced by an accumulation of carbon within the cleaning solution. Alternative electrode designs or alternative cleaning solutions will be needed if this approach is to be used in systems with similar foulants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.