Abstract. We explore a two-dimensional kinematic solar dynamo model in a full sphere, based on the helioseismically determined solar rotation profile and with an α effect concentrated near the solar surface, which captures the Babcock-Leighton idea that the poloidal field is created from the decay of tilted bipolar active regions. The meridional circulation, assumed to penetrate slightly below the tachocline, plays an important role. Some doubts have recently been raised regarding the ability of such a model to reproduce solar-like dipolar parity. We specifically address the parity issue and show that the dipolar mode is preferred when certain reasonable conditions are satisfied, the most important condition being the requirement that the poloidal field should diffuse efficiently to get coupled across the equator. Our model is shown to reproduce various aspects of observational data, including the phase relation between sunspots and the weak, diffuse field.
Whether or not the upcoming cycle 24 of solar activity will be strong is being hotly debated. The solar cycle is produced by a complex dynamo mechanism. We model the last few solar cycles by "feeding" observational data of the Sun's polar magnetic field into our solar dynamo model. Our results fit the observed sunspot numbers of cycles 21-23 reasonably well and predict that cycle 24 will be about 35% weaker than cycle 23.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.