Abstract. We explore a two-dimensional kinematic solar dynamo model in a full sphere, based on the helioseismically determined solar rotation profile and with an α effect concentrated near the solar surface, which captures the Babcock-Leighton idea that the poloidal field is created from the decay of tilted bipolar active regions. The meridional circulation, assumed to penetrate slightly below the tachocline, plays an important role. Some doubts have recently been raised regarding the ability of such a model to reproduce solar-like dipolar parity. We specifically address the parity issue and show that the dipolar mode is preferred when certain reasonable conditions are satisfied, the most important condition being the requirement that the poloidal field should diffuse efficiently to get coupled across the equator. Our model is shown to reproduce various aspects of observational data, including the phase relation between sunspots and the weak, diffuse field.
Sunspots, dark magnetic regions occurring at low latitudes on the Sun's surface, are tracers of the magnetic field generated by the dynamo mechanism. Recent solar dynamo models, which use the helioseismically determined solar rotation, indicate that sunspots should form at high latitudes, contrary to observations. We present a dynamo model with the correct latitudinal distribution of sunspots and demonstrate that this requires a meridional flow of material that penetrates deeper than hitherto believed, into the stable layers below the convection zone. Such a deep material flow may have important implications for turbulent convection and elemental abundance in the Sun and similar stars.
The predictability, or lack thereof, of the solar cycle is governed by numerous separate physical processes that act in unison in the interior of the Sun. Magnetic flux transport and the finite time delay it introduces, specifically in the so-called Babcock-Leighton models of the solar cycle with spatially segregated source regions for the α and Ω-effects, play a crucial rule in this predictability. Through dynamo simulations with such a model, we study the physical basis of solar cycle predictions by examining two contrasting regimes, one dominated by diffusive magnetic flux transport in the solar convection zone, the other dominated by advective flux transport by meridional circulation. Our analysis shows that diffusion plays an important role in flux transport, even when the solar cycle period is governed by the meridional flow speed. We further examine the persistence of memory of past cycles in the advection and diffusion dominated regimes through stochastically forced dynamo simulations. We find that in the advection-dominated regime, this memory persists for up to three cycles, whereas in the diffusion-dominated regime, this memory persists for mainly one cycle. This indicates that solar cycle predictions based on these two different regimes would have to rely on fundamentally different inputs -which may be the cause of conflicting predictions. Our simulations also show that the observed solar cycle amplitude-period relationship arises more naturally in the diffusion dominated regime, thereby supporting those dynamo models in which diffusive flux transport plays a dominant role in the solar convection zone.
There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vastextending from deep within the Sun to far outside the planetary orbits -and the physics complex -including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 hrs ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.
Abstract. We respond to Dikpati et al.'s criticism of our recent solar dynamo model. A different treatment of the magnetic buoyancy is the most probable reason for their different results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.