Three-dimensional (3D) documentation of heritage buildings has long employed both image-based and range-based techniques. Unmanned aerial vehicles (UAVs) provide a particular advantage for image-based techniques in acquiring aerial views, which are difficult to attain using classical terrestrial-based methods. The technological development of optical sensors and dense matching algorithms also complement existing photogrammetric workflows for the documentation of heritage objects. In this paper, fundamental concepts in photogrammetry and 3D reconstruction based on structure from motion (SfM) will be briefly reviewed. Two case studies were performed using two types of UAVs, one being a state-of-the-art platform dedicated to obtaining close-range images. Comparisons with laser scanning data were performed and several issues regarding the aerial triangulation and dense matching results were assessed. The results show that although the dense matching of these UAV images may generate centimetre-level precision, a further increase in precision is often hampered by the quality of the onboard sensor.
Built heritage has been documented by reality-based modeling for geometric description and by ontology for knowledge management. The current challenge still involves the extraction of geometric primitives and the establishment of their connection to heterogeneous knowledge. As a recently developed 3D information modeling environment, building information modeling (BIM) entails both graphical and non-graphical aspects of the entire building, which has been increasingly applied to heritage documentation and generates a new issue of heritage/historic BIM (HBIM). However, HBIM needs to additionally deal with the heterogeneity of geometric shape and semantic knowledge of the heritage object. This paper developed a new mesh-to-HBIM modeling workflow and an integrated BIM management system to connect HBIM elements and historical knowledge. Using the St-Pierre-le-Jeune Church, Strasbourg, France as a case study, this project employs Autodesk Revit as a BIM environment and Dynamo, a built-in visual programming tool of Revit, to extend the new HBIM functions. The mesh-to-HBIM process segments the surface mesh, thickens the triangle mesh to 3D volume, and transfers the primitives to BIM elements. The obtained HBIM is then converted to the ontology model to enrich the heterogeneous knowledge. Finally, HBIM geometric elements and ontology semantic knowledge is joined in a unified BIM environment. By extending the capability of the BIM platform, the HBIM modeling process can be conducted in a time-saving way, and the obtained HBIM is a semantic model with object-oriented knowledge.
The 3D documentation of heritage complexes or quarters often requires more than one scale due to its extended area. While the documentation of individual buildings requires a technique with finer resolution, that of the complex itself may not need the same degree of detail. This has led to the use of a multi-scale approach in such situations, which in itself implies the integration of multi-sensor techniques. The challenges and constraints of the multi-sensor approach are further added when working in urban areas, as some sensors may be suitable only for certain conditions. This paper describes the integration of heterogeneous sensors as a logical solution in addressing this problem. The royal palace complex of Kasepuhan Cirebon, Indonesia, was taken as a case study. The site dates to the 13th Century and has survived to this day as a cultural heritage site, preserving within itself a prime example of vernacular Cirebonese architecture. This type of architecture is influenced by the tropical climate, with distinct features designed to adapt to the hot and humid year-long weather. In terms of 3D documentation, this presents specific challenges that need to be addressed both during the acquisition and processing stages. Terrestrial laser scanners, DSLR cameras, as well as UAVs were utilized to record the site. The implemented workflow, some geometrical analysis of the results, as well as some derivative products will be discussed in this paper. Results have shown that although the proposed multi-scale and multi-sensor workflow has been successfully employed, it needs to be adapted and the related challenges addressed in a particular manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.