For the observation of human joint cartilage, X-ray, computed tomography (CT) or magnetic resonance imaging (MRI) are the main diagnostic tools to evaluate pathologies or traumas. The current work introduces a set of novel measurements and 3D features based on MRI and CT data of the knee joint, used to reconstruct bone and cartilages and to assess cartilage condition from a new perspective. Forty-seven subjects presenting a degenerative disease, a traumatic injury or no symptoms or trauma were recruited in this study and scanned using CT and MRI. Using medical imaging software, the bone and cartilage of the knee joint were segmented and 3D reconstructed. Several features such as cartilage density, volume and surface were extracted. Moreover, an investigation was carried out on the distribution of cartilage thickness and curvature analysis to identify new markers of cartilage condition. All the extracted features were used with advanced statistics tools and machine learning to test the ability of our model to predict cartilage conditions. This work is a first step towards the development of a new gold standard of cartilage assessment based on 3D measurements.
Knee Osteoarthritis (OA) is a highly prevalent condition affecting knee joint that causes loss of physical function and pain. Clinical treatments are mainly focused on pain relief and limitation of disabilities; therefore, it is crucial to find new paradigms assessing cartilage conditions for detecting and monitoring the progression of OA. The goal of this paper is to highlight the predictive power of several features, such as cartilage density, volume and surface. These features were extracted from the 3D reconstruction of knee joint of forty-seven different patients, subdivided into two categories: degenerative and non-degenerative. The most influent parameters for the degeneration of the knee cartilage were determined using two machine learning classification algorithms (logistic regression and support vector machine); later, box plots, which depicted differences between the classes by gender, were presented to analyze several of the key features’ trend. This work is part of a strategy that aims to find a new solution to assess cartilage condition based on new-investigated features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.