Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (IMS). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for IMS). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.
For the observation of human joint cartilage, X-ray, computed tomography (CT) or magnetic resonance imaging (MRI) are the main diagnostic tools to evaluate pathologies or traumas. The current work introduces a set of novel measurements and 3D features based on MRI and CT data of the knee joint, used to reconstruct bone and cartilages and to assess cartilage condition from a new perspective. Forty-seven subjects presenting a degenerative disease, a traumatic injury or no symptoms or trauma were recruited in this study and scanned using CT and MRI. Using medical imaging software, the bone and cartilage of the knee joint were segmented and 3D reconstructed. Several features such as cartilage density, volume and surface were extracted. Moreover, an investigation was carried out on the distribution of cartilage thickness and curvature analysis to identify new markers of cartilage condition. All the extracted features were used with advanced statistics tools and machine learning to test the ability of our model to predict cartilage conditions. This work is a first step towards the development of a new gold standard of cartilage assessment based on 3D measurements.
Current diagnosis of concussion relies on self-reported symptoms and medical records rather than objective biomarkers. This work uses a novel measurement setup called BioVRSea to quantify concussion status. The paradigm is based on brain and muscle signals (EEG, EMG), heart rate and center of pressure (CoP) measurements during a postural control task triggered by a moving platform and a virtual reality environment. Measurements were performed on 54 professional athletes who self-reported their history of concussion or non-concussion. Both groups completed a concussion symptom scale (SCAT5) before the measurement. We analyzed biosignals and CoP parameters before and after the platform movements, to compare the net response of individual postural control. The results showed that BioVRSea discriminated between the concussion and non-concussion groups. Particularly, EEG power spectral density in delta and theta bands showed significant changes in the concussion group and right soleus median frequency from the EMG signal differentiated concussed individuals with balance problems from the other groups. Anterior–posterior CoP frequency-based parameters discriminated concussed individuals with balance problems. Finally, we used machine learning to classify concussion and non-concussion, demonstrating that combining SCAT5 and BioVRSea parameters gives an accuracy up to 95.5%. This study is a step towards quantitative assessment of concussion.
Objective To define a new neurophysiological signature from electroen- cephalography (EEG) during a complex postural control task using the BioVRSea paradigm, consisting of virtual reality (VR) and a moving platform, mimicking the behavior of a boat on the sea. Approach EEG (64 electrodes) data from 190 healthy subjects were acquired. The experiment is composed of 6 segments (Baseline, PRE, 25%, 50%, 75%, POST). The baseline lasts 60 seconds while standing on the motionless platform with a mountain view in the VR goggles. PRE and POST last 40 seconds while standing on the motionless platform with a sea simulation. The 3 other tasks last 40 seconds each, with the platform moving to adapt to the waves, and the subject holding a bar to maintain its balance. The power spectral density (PSD) difference for each task minus baseline has been computed for every electrode, for five frequency bands (delta, theta, alpha, beta, and low-gamma). Statistical significance has been computed. Main results All the bands were significant for the whole cohort, for each task regarding baseline. Delta band shows a prefrontal PSD increase, theta a fronto- parietal decrease, alpha a global scalp power decrease, beta an increase in the occipital and temporal scalps and a decrease in other areas, and low-gamma a significant but slight increase in the parietal, occipital and temporal scalp areas. Significance This study develops a neurophysiological reference during a complex postural control task. In particular, we found a strong localized activity associated with certain frequency bands during certain phases of the experiment. This is the first step towards a neu- rophysiological signature that can be used to identify pathological conditions lacking quantitative diagnostics assessment.
Knee Osteoarthritis (OA) is a highly prevalent condition affecting knee joint that causes loss of physical function and pain. Clinical treatments are mainly focused on pain relief and limitation of disabilities; therefore, it is crucial to find new paradigms assessing cartilage conditions for detecting and monitoring the progression of OA. The goal of this paper is to highlight the predictive power of several features, such as cartilage density, volume and surface. These features were extracted from the 3D reconstruction of knee joint of forty-seven different patients, subdivided into two categories: degenerative and non-degenerative. The most influent parameters for the degeneration of the knee cartilage were determined using two machine learning classification algorithms (logistic regression and support vector machine); later, box plots, which depicted differences between the classes by gender, were presented to analyze several of the key features’ trend. This work is part of a strategy that aims to find a new solution to assess cartilage condition based on new-investigated features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.