The influence of charge trap states in the dielectric boundary material on capacitively coupled radio-frequency (RF) plasma discharge is investigated with theory and particle-in-cell/Monte Carlo collision simulation. It is found that the trap states of the wall material manipulated discharge properties mainly through the varying ion-induced secondary electron emission (SEE) coefficient in response to dynamic surface charges accumulated within the solid boundary. A comprehensive SEE model considering surface charging is established first, which incorporates the valence band electron distribution, electron trap density, and charge trapping through Auger neutralization and de-excitation. Theoretical analysis is carried out to reveal the effects of trap states on sheath solution, stability, plasma density and temperature, particle and power balance, etc. The theoretical work is supported by simulation results, showing the reduction of the mean RF sheath potential as charging-dependent emission coefficient increases. As the gas pressure increases, a shift of the maximum ionization rate from the bulk plasma center to the plasma-sheath interface is observed, which is also influenced by the trap states of the electrode material where the shift happens at a lower pressure with traps considered. In addition, charge traps are proven to be helpful for creating asymmetric plasma discharges with geometrically symmetric structures; such an effect is more pronounced in γ-mode discharges.
Local nonlinear gyrokinetic simulations of tokamak plasmas demonstrate that turbulent eddies can extend along magnetic field lines for hundreds of poloidal turns when the magnetic shear is very small. By accurately modeling different field line topologies (e.g. low-order rational, almost rational, or irrational value of the safety factor), we show that the self-interaction of such ``ultra long’’ eddies can dramatically reduce heat transport. This extreme sensitivity of turbulent transport to the safety factor reveals novel strategies to improve confinement, constitutes experimentally testable predictions, and illuminates past observations of internal transport barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.