Recently, a Graph Neural Network (GNN) model called RouteNet was proposed as an efficient method to estimate end-to-end network performance metrics such as delay or jitter, given the topology, routing, and traffic of the network. Despite its success in making accurate estimations and generalizing to unseen topologies, the model makes some simplifying assumptions about the network, and does not consider all the particularities of how real networks operate. In this work we extend the architecture of RouteNet to support different features on forwarding devices, specifically we focus on devices with variable queue sizes, and we experimentally evaluate the accuracy of the extended RouteNet architecture. CCS CONCEPTS • Networks → Network performance evaluation; • Computing methodologies → Machine learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.