The proliferation of emergent network applications (e.g., AR/VR, telesurgery, real-time communications) is increasing the difficulty of managing modern communication networks. These applications typically have stringent requirements (e.g., ultra-low deterministic latency), making it more difficult for network operators to manage their network resources efficiently. In this article, we propose the Digital Twin Network (DTN) as a key enabler for efficient network management in modern networks. We describe the general architecture of the DTN and argue that recent trends in Machine Learning (ML) enable building a DTN that efficiently and accurately mimics real-world networks. In addition, we explore the main ML technologies that enable developing the components of the DTN architecture. Finally, we describe the open challenges that the research community has to address in the upcoming years in order to enable the deployment of the DTN in real-world scenarios.
Today, network operators still lack functional network models able to make accurate predictions of end-to-end Key Performance Indicators (e.g., delay or jitter) at limited cost. Recently, a novel Graph Neural Network (GNN) model called RouteNet was proposed as a cost-effective alternative to estimate the per-source/destination pair mean delay and jitter in networks. Thanks to its GNN architecture that operates over graph-structured data, RouteNet revealed an unprecedented ability to learn and model the complex relationships among topology, routing and input traffic in networks. As a result, it was able to make performance predictions with similar accuracy than resource-hungry packet-level simulators even in network scenarios unseen during training. In this demo, we will challenge the generalization capabilities of RouteNet with more complex scenarios, including larger topologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.