In order to drive safely and efficiently on public roads, autonomous vehicles will have to understand the intentions of surrounding vehicles, and adapt their own behavior accordingly. If experienced human drivers are generally good at inferring other vehicles' motion up to a few seconds in the future, most current Advanced Driving Assistance Systems (ADAS) are unable to perform such medium-term forecasts, and are usually limited to high-likelihood situations such as emergency braking. In this article, we present a first step towards consistent trajectory prediction by introducing a long short-term memory (LSTM) neural network, which is capable of accurately predicting future longitudinal and lateral trajectories for vehicles on highway. Unlike previous work focusing on a low number of trajectories collected from a few drivers, our network was trained and validated on the NGSIM US-101 dataset, which contains a total of 800 hours of recorded trajectories in various traffic densities, representing more than 6000 individual drivers.
The control of a network of signalized intersections is considered. Previous work demonstrates that the so-called backpressure control provides stability guarantees, assuming infinite queues capacities. In this paper, we highlight the failing current of backpressure control under finite capacities by identifying sources of nonwork conservation and congestion propagation. We propose the use of a normalized pressure which guarantees work conservation and mitigates congestion propagation, while ensuring fairness at low traffic densities, and recovering original backpressure as capacities grow to infinity. This capacity-aware backpressure control enables improving performance as congestion increases, as indicated by simulation results, and keeps the key benefits of backpressure: the ability to be distributed over intersections and O(1) complexity.
Lane change is a crucial vehicle maneuver which needs coordination with surrounding vehicles. Automated lane changing functions built on rule-based models may perform well under pre-defined operating conditions, but they may be prone to failure when unexpected situations are encountered. In our study, we proposed a Reinforcement Learning based approach to train the vehicle agent to learn an automated lane change behavior such that it can intelligently make a lane change under diverse and even unforeseen scenarios. Particularly, we treated both state space and action space as continuous, and designed a Q-function approximator that has a closedform greedy policy, which contributes to the computation efficiency of our deep Q-learning algorithm. Extensive simulations are conducted for training the algorithm, and the results illustrate that the Reinforcement Learning based vehicle agent is capable of learning a smooth and efficient driving policy for lane change maneuvers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.