The control of a network of signalized intersections is considered. Previous work demonstrates that the so-called backpressure control provides stability guarantees, assuming infinite queues capacities. In this paper, we highlight the failing current of backpressure control under finite capacities by identifying sources of nonwork conservation and congestion propagation. We propose the use of a normalized pressure which guarantees work conservation and mitigates congestion propagation, while ensuring fairness at low traffic densities, and recovering original backpressure as capacities grow to infinity. This capacity-aware backpressure control enables improving performance as congestion increases, as indicated by simulation results, and keeps the key benefits of backpressure: the ability to be distributed over intersections and O(1) complexity.
International audienceWe consider the problem of coordinating a set of automated vehicles at an intersection with no traffic light. The priority-based coordination framework is adopted to separate the problem into a priority assignment problem and a vehicle control problem under fixed priorities. This framework ensures good properties like safety (collision-free trajectories, brake-safe control) and liveness (no gridlock). We propose a decentralized Model Predictive Control (MPC) approach where vehicles solve local optimization problems in parallel, ensuring them to cross the intersection smoothly. The proposed decentralized MPC scheme considers the requirements of efficiency, comfort and fuel economy and ensures the smooth behaviors of vehicles. Moreover, it maintains the system-wide safety property of the priority-based framework. Simulations are performed to illustrate the benefits of our approach
Recently, researchers have proposed various intersection management techniques that enable autonomous vehicles to cross the intersection without traffic lights or stop signs. In particular, a priority-based coordination system with provable collision-free and deadlock-free features has been presented. In this paper, we extend the priority-based approach to support legacy vehicles without compromising above-mentioned features. We make the hypothesis that legacy vehicles are able to keep a safe distance from their leading vehicles. Then we explore some special configurations of system that ensures the safe crossing of legacy vehicles. We implement the extended system in a realistic traffic simulator SUMO. Simulations are performed to demonstrate the safety of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.