This paper tackles the problem of ensuring training data privacy in a federated learning context. Relying on Homomorphic Encryption (HE) and Differential Privacy (DP), we propose a framework addressing threats on the privacy of the training data. Notably, the proposed framework ensures the privacy of the training data from all actors of the learning process, namely the data owners and the aggregating server. More precisely, while HE blinds a semi-honest server during the learning protocol, DP protects the data from semi-honest clients participating in the training process as well as end-users with black-box or white-box access to the trained model. In order to achieve this, we provide new theoretical and practical results to allow these techniques to be rigorously combined. In particular, by means of a novel stochastic quantisation operator, we prove DP guarantees in a context where the noise is quantised and bounded due to the use of HE. The paper is concluded by experiments which show the practicality of the entire framework in terms of both model quality (impacted by DP) and computational overhead (impacted by HE).
In this paper we propose a method of explainable material classification from imprecise chemical compositions. The problem of classification from imprecise data is addressed with a fuzzy decision tree whose terms are learned by a clustering algorithm. We deduce fuzzy rules from the tree, which will provide a justification of the result of the classification. Two opposed approaches are compared : the probabilistic approach and the possibilistic approach.
This paper addresses the issue of collaborative deep learning with privacy constraints. Building upon differentially private decentralized semi-supervised learning, we introduce homomorphically encrypted operations to extend the set of threats considered so far. While previous methods relied on the existence of an hypothetical 'trusted' third party, we designed specific aggregation operations in the encrypted domain that allow us to circumvent this assumption. This makes our method practical to real-life scenario where data holders do not trust any third party to process their datasets. Crucially the computational burden of the approach is maintained reasonable, making it suitable to deep learning applications. In order to illustrate the performances of our method, we carried out numerical experiments using image datasets in a classification context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.