Chitin oligosaccharides (COs) hold high promise as organic fertilizers in the ongoing agro-ecological transition. Short- and long-chain COs can contribute to the establishment of symbiotic associations between plants and microorganisms, facilitating the uptake of soil nutrients by host plants. Long-chain COs trigger plant innate immunity. A fine investigation of these different signaling pathways requires improving the access to high-purity COs. Here, we used the response surface methodology to optimize the production of COs by enzymatic hydrolysis of water-soluble chitin (WSC) with hen egg-white lysozyme. The influence of WSC concentration, its acetylation degree, and the reaction time course were modelled using a Box–Behnken design. Under optimized conditions, water-soluble COs up to the nonasaccharide were formed in 51% yield and purified to homogeneity. This straightforward approach opens new avenues to determine the complex roles of COs in plants.
Carbohydrate−protein interactions trigger a wide range of biological signaling pathways, the mainstays of physiological and pathological processes. However, there are an incredible number of carbohydrate-binding proteins (CBPs) that remain to be identified and characterized. This study reports for the first time the covalent labeling of CBPs by triazinyl glycosides, a new and promising class of affinitybased glycoprobes. Mono-and bis-clickable triazinyl glycosides were efficiently synthesized from unprotected oligosaccharides (chitinpentaose and 2′-fucosyl-lactose) in a single step. These molecules allow the specific covalent labeling of chitin-oligosaccharide-binding proteins (wheat germ agglutinin WGA and Bc ChiA1 D202A, an inactivated chitinase) and fucosyl-binding lectin (UEA-I), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.