Wood-based materials are generally prone to colonization by mould fungi and other discoloring microorganisms, but their resistance to fungal discoloration varies. Different standardized test methods for determining the susceptibility to mould fungi have been used to evaluate various wood-based materials, but the obtained results suggest that mould resistance depends on the method applied. Therefore, this study aimed at a comparative evaluation of two commonly used methods for determining the mould resistance of wood-based materials, i.e. the chamber method according to BS 3900—Part G6 and the malt agar plate method according to ISO 16869. Solid wood, wood fiber insulation boards and wood polymer composites were inoculated, incubated for different time intervals, and assessed with regard to superficial mould growth. Mould growth ratings obtained with the two methods did not correlate well, neither within one type of material nor across different materials, which can be attributed to higher moisture contents and additional nutrients available for the specimens in the agar plate test compared to those in the chamber test. It was concluded, that the experimental set up could have an overriding effect on the results of mould resistance tests.
Wood fibre insulation boards (WFIB) are typically made from softwood fibres. However, due to the rapid decrease in softwood stands in Germany, the industry will be forced to adapt to the wood market. Therefore, alternative approaches for the substitution of softwood with hardwood will be needed in the fibre industry. The objective of this paper is to address the characterisation of hardwood fibres regarding their availability for the WFIB industry. The physico-mechanical properties of WFIB are significantly determined by the length of the fibres. Longer softwood fibres usually generate higher strength properties and a lower thermal conductivity than shorter hardwood fibres. In this paper, the potential application of hardwood fibres (up to 20,500 μm long) produced in a refiner by thermo-mechanical pulping (TMP) to WFIB production was examined. The scanner-based system FibreShape was used for the automatic optical analysis of the geodesic length distribution of fibres. The analysed hardwood fibres contained significantly more dust and were shorter than respectively produced softwood fibres, limiting their applicability for WFIB production. Thus, two analytical approaches were chosen to receive longer fibres and less dust: (1) blending hardwood fibres with supporting softwood fibres (20%, 50 and 80% proportion of softwood), and (2) mathematical fractionation of hardwood fibres based on the fibre length to remove all particles smaller than 500 μm. It was concluded that the practical fractionation seems to be economically and ecologically challenging and that blending hardwood fibres with at least 50% softwood fibres offers a promising approach, which should be further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.