The huge number of elementary flux modes in genome-scale metabolic networks makes analysis based on elementary flux modes intrinsically difficult. However, it has been shown that the elementary flux modes with optimal yield often contain highly redundant information. The set of optimal-yield elementary flux modes can be compressed using modules. Up to now, this compression was only possible by first enumerating the whole set of all optimal-yield elementary flux modes. We present a direct method for computing modules of the thermodynamically constrained optimal flux space of a metabolic network. This method can be used to decompose the set of optimal-yield elementary flux modes in a modular way and to speed up their computation. In addition, it provides a new form of coupling information that is not obtained by classical flux coupling analysis. We illustrate our approach on a set of model organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.