Harvest control rules have become an important tool in modern fisheries management, and are increasingly adopted to provide continuity in management practices, to deal with uncertainty and ecosystem considerations, and to relieve management decisions from short-term political pressure. We provide the conceptual and institutional background for harvest control rules, a discussion of the structure of fisheries management, and brief introductions to harvest control rules in a selection of present day cases. The cases demonstrate that harvest control rules take different forms in different settings, yet cover only a subset of the full policy space. We conclude with views on harvest control rules in future fisheries management, both in terms of ideal and realistic developments. One major challenge for future fisheries management is closing the gap between ideas and practice.
A two-dimensional stage-structured population model with nonlinear cannibalism terms is studied. We show that there is a large parameter interval where the nontrivial equilibrium of the model is the only stable attractor, but that there also exist parameter intervals where we find quasiperiodic, periodic and chaotic dynamics. Moreover, in the interplay between increasing the fecundity and increasing the cannibalism pressure, the former turns out to be a destabilizing effect while the latter tends to act in a stabilizing fashion. Finally, we have applied the model to the North Atlantic cod stock using ICES biomass estimates. Our main conclusion from this study is that the combined effect of recruitment and cannibalism may not serve as an explanation of the observed fluctuations in the cod stock.
We review current knowledge about climate change impacts on Arctic seafood production. Large-scale changes in the Arctic marine food web can be expected for the next 40–100 years. Possible future trajectories under climate change for Arctic capture fisheries anticipate the movement of aquatic species into new waters and changed the dynamics of existing species. Negative consequences are expected for some fish stocks but others like the Barents Sea cod (Gadus morhua) may instead increase. Arctic aquaculture that constitutes about 2% of global farming is mainly made up of Norwegian salmon (Salmo salar) farming. The sector will face many challenges in a warmer future and some of these are already a reality impacting negatively on salmon growth. Other more indirect effects from climate change are more uncertain with respect to impacts on the economic conditions of Arctic aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.