The usefulness of nitrogen vacancy (NV) centers in diamond is augmented by a low defect and impurity density in the surrounding host material, and applications benefit from the ability to control the position of the NV centers. Herein, a process to create NV centers on single‐crystalline diamond microstructures by chemical vapor deposition (CVD) is presented. Pyramidal structures with {111} side facets are formed during the intrinsic overgrowth of dry chemically etched cylindrical pillars on a substrate with {100} surface orientation. A thin nitrogen‐doped epitaxial layer is deposited on top of the pyramids resulting in the creation of NV centers exclusively on the {111} pyramid side faces. Optically detected magnetic resonance (ODMR) and spin echo measurements reveal preferential alignment of the NV centers in a single {111} direction and a
T
2
time of
55
μs
. The
T
2
time of the NV centers is limited by the surrounding substitutional nitrogen (P1 center) concentration of
[P
1
]
=
5
ppm
. A low density of other paramagnetic spin noise is detected by double‐electron electron resonance (DEER) measurements.
A microwave plasma reactor for diamond growth that allows for highly controllable process conditions is presented. The position of the diamond substrate within the reactor can be accurately controlled. Thus, equilibration of plasma conditions can be carried out after changes in process parameters. With this approach, sharp layer transitions among doped, undoped, and isotopically controlled diamond films can be obtained. In addition to the sample transfer, the growth temperature is maintained through a substrate heater, and a clean reactor environment is realized by a load‐lock sample exchange system. The plasma conditions are constantly monitored by optical emission spectroscopy. Using this system, the growth of nanoscopic sandwich structures is demonstrated with controlled isotopic ratios down to ≈10 nm thickness and N(V) layers below 50 nm are obtained on (001)‐oriented diamond. Growth rates and doping efficiencies depending on the used methane concentration are presented. Characterization with continuous‐wave optically detected magnetic resonance yields an average contrast of 4.1% per nitrogen vacancy (NV) orientation in layers with a thickness below 100 nm. Depending on the used methane concentration, surface morphology and NV doping homogeneity are influenced as observed by photoluminescence and atomic force microscopy measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.