A single-dose ingestion of flavanol-rich cocoa acutely reverses endothelial dysfunction. To investigate the time course of endothelial function during daily consumption of high-flavanol cocoa, we determined flow-mediated dilation (FMD) acutely (for up to 6 hours after single-dose ingestion) and chronically (administration for 7 days). The study population represented individuals with smoking-related endothelial dysfunction; in addition to FMD, plasma nitrite and nitrate were measured. The daily consumption of a flavanol-rich cocoa drink (3 x 306 mg flavanols/d) over 7 days (n=6) resulted in continual FMD increases at baseline (after overnight fast and before flavanol ingestion) and in sustained FMD augmentation at 2 hours after ingestion. Fasted FMD responses increased from 3.7 +/- 0.4% on day 1 to 5.2 +/- 0.6%, 6.1 +/- 0.6%, and 6.6 +/- 0.5% (each P < 0.05) on days 3, 5, and 8, respectively. FMD returned to 3.3 +/- 0.3% after a washout week of cocoa-free diet (day 15). Increases observed in circulating nitrite, but not in circulating nitrate, paralleled the observed FMD augmentations. The acute, single-dose consumption of cocoa drinks with 28 to 918 mg of flavanols led to dose-dependent increases in FMD and nitrite, with a maximal FMD at 2 hours after consumption. The dose to achieve a half-maximal FMD response was 616 mg (n=6). Generally applied biomarkers for oxidative stress (plasma, MDA, TEAC) and antioxidant status (plasma ascorbate, urate) remained unaffected by cocoa flavanol ingestion. The daily consumption of flavanol-rich cocoa has the potential to reverse endothelial dysfunction in a sustained and dose-dependent manner.
A variety of molecular-graph-based structure-descriptors were proposed, in particular the Wiener index W , the largest graph eigenvalue 1 , the connectivity index , the graph energy E and the Hosoya index Z, capable of measuring the branching of the carbon-atom skeleton of organic compounds, and therefore suitable for describing several of their physico-chemical properties. We now determine the structure of the chemical trees (= the graph representation of acyclic saturated hydrocarbons) that are extremal with respect to W , 1 , E, and Z, whereas the analogous problem for was solved earlier. Among chemical trees with 5, 6, 7, and 3k + 2 vertices, k = 2 3 : : : , one and the same tree has maximum 1 and minimum W , E, Z. Among chemical trees with 3k and 3k + 1 vertices, k = 3 4 : : : , one tree has minimum W and maximum 1 and another minimum E and Z.
Methyltransferases provide excellent specificity in late-stage alkylation of biomolecules. Their dependence on S-adenosyl-L-methionine (SAM) mandates efficient access to SAM analogues for biocatalytic applications. We directly compared halide methyltransferase (HMT) and...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.