IntroductionLumbar hernias occur mostly in the posterolateral region of IVDs and mechanical loading is an important risk factor. Studies show that dynamic and static overloading affect the nucleus and annulus of the IVD differently. We hypothesize there is also variance in the effect of overloading on the IVD’s anterior, lateral and posterior annulus, which could explain the predilection of herniations in the posterolateral region. We assessed the regional mechanical and cellular responses of lumbar caprine discs to dynamic and static overloading.Material and methodsIVDs (n = 125) were cultured in a bioreactor and subjected to simulated-physiological loading (SPL), high dynamic (HD), or high static (HS) overloading. The effect of loading was determined in five disc regions: nucleus, inner-annulus and anterior, lateral and posterior outer-annulus. IVD height loss and external pressure transfer during loading were measured, cell viability was mapped and quantified, and matrix integrity was assessed.ResultsDuring culture, overloaded IVDs lost a significant amount of height, yet the distribution of axial pressure remained unchanged. HD loading caused cell death and disruption of matrix in all IVD regions, whereas HS loading particularly affected cell viability and matrix integrity in the posterior region of the outer annulus.ConclusionAxial overloading is detrimental to the lumbar IVD. Static overloading affects the posterior annulus more strongly, while the nucleus is relatively spared. Hence, static overloading predisposes the disc for posterior herniation. These findings could have implications for working conditions, in particular of sedentary occupations, and the design of interventions aimed at prevention and treatment of early intervertebral disc degeneration.
Purpose Lumbar laminectomy affects spinal stability in shear loading. However, the effects of laminectomy on torsion biomechanics are unknown. The purpose of this study was to investigate the effect of laminectomy on torsion stiffness and torsion strength of lumbar spinal segments following laminectomy and whether these biomechanical parameters are affected by disc degeneration and bone mineral density (BMD). Methods Ten human cadaveric lumbar spines were obtained (age 75.5, range 59-88). Disc degeneration (MRI) and BMD (DXA) were assessed. Disc degeneration was classified according to Pfirrmann and dichotomized in mild or severe. BMD was defined as high BMD (Cmedian BMD) or low BMD (\median BMD). Laminectomy was performed either on L2 (59) or L4 (59). Twenty motion segments (L2-L3 and L4-L5) were isolated. The effects of laminectomy, disc degeneration and BMD on torsion stiffness (TS) and torsion moments to failure (TMF) were studied.Results Load-displacement curves showed a typical bi-phasic pattern with an early torsion stiffness (ETS), late torsion stiffness (LTS) and a TMF. Following laminectomy, ETS decreased 34.1 % (p \ 0.001), LTS decreased 30.1 % (p = 0.027) and TMF decreased 17.6 % (p = 0.041). Disc degeneration (p \ 0.001) and its interaction with laminectomy (p \ 0.031) did significantly affect ETS. In the mildly degenerated group, ETS decreased 19.7 % from 7.6 Nm/degree (6.4-8.4) to 6.1 Nm/degree (1.5-10.3) following laminectomy. In the severely degenerated group, ETS decreased 22.3 % from 12.1 Nm/degree (4.6-21.9) to 9.4 Nm/degree (5.6-14.3) following laminectomy. In segments with low BMD, TMF was 40.7 % (p \ 0.001) lower than segments with high BMD [34.9 Nm (range 23.7-51.2) versus 58.9 Nm (range 43.8-79.2)]. Conclusions Laminectomy affects both torsion stiffness and torsion load to failure. In addition, torsional strength is strongly affected by BMD whereas disc degeneration affects torsional stiffness. Assessment of disc degeneration and BMD pre-operatively improves the understanding of the biomechanical effects of a lumbar laminectomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.