We present new stilbazolium salt DSTMS (4‐N,N‐dimethylamino‐4′‐N′‐methyl‐stilbazolium 2,4,6‐trimethylbenzenesulfonate) with both high second‐order nonlinear optical properties and very favorable crystal growth characteristics. We are able to obtain very large area bulk single crystals of more than 3 × 3 × 0.2 cm3 with a high optical quality without using seed crystals by using low‐temperature solution growth. We also demonstrate the growth of single crystalline thin films of DSTMS with an area of up to 6 × 5 mm2 and a thickness between 5–30 μm. Nonlinear optical measurements reveal that DSTMS possesses large nonlinear optical susceptibilities with χ111(2) = (430 ± 40) pm V–1 at 1.9 μm. Highly efficient generation of broadband THz waves with THz electric field strengths of more than 4 kV cm–1 using 160 fs laser pump pulses at a wavelength λ = 1.45 μm and DSTMS crystals has been demonstrated.
We investigate a configurationally locked polyene (CLP) crystal 2‐(3‐(4‐hydroxystyryl)‐5,5‐dimethylcyclohex‐2‐enylidene)malononitrile (OH1) containing a phenolic electron donor, which also acts as a hydrogen bond donor. The OH1 crystals with orthorhombic space group Pna21 (point group mm2) exhibit large second‐order nonlinear optical figures of merit, high thermal stability and very favorable crystal growth characteristics. Higher solubility in methanol and a larger temperature difference between the melting temperature and the decomposition temperature of OH1 compared to analogous CLP crystals, are of advantage for solution and melt crystal growth, respectively. Acentric bulk OH1 crystals of large sizes with side lengths of up to 1 cm with excellent optical quality have been successfully grown from methanol solution. The microscopic and macroscopic nonlinearities of the OH1 crystals are investigated theoretically and experimentally. The OH1 crystals exhibit a large macroscopic nonlinearity with four times larger powder second harmonic generation efficiency than that of analogous CLP crystals containing dimethylamino electron donor. A very high potential of OH1 crystals for broadband THz wave emitters in the full frequency range of 0.1–3 THz by optical rectification of 160 fs pulses has been demonstrated.
Broadband THz pulses have been generated in 2-[3-(4- hydroxystyryl)-5,5-dimethylcyclohex-2-enylidene]malononitrile (OH1) by optical rectification of sub-picosecond laser pulses. We show that OH1 crystals allow velocity-matched generation and detection of THz frequencies in the whole range between 0.3 and 2.5 THz for a pump laser wavelength range from 1200 to 1460 nm. OH1 crystals show a higher figure of merit for THz generation and detection in the optimized range compared to the benchmark inorganic semiconductor crystals ZnTe and GaAs and the organic ionic salt crystal 4-N,N-dimethylamino-4'-N'-methyl stilbazolium tosylate (DAST). The material shows a low THz absorption coefficient alpha3 in the range between 0.3 and 2.5 THz, reaching values lower than 0.2mm(-1) between 0.7 and 1.0 THz. This is similar as in ZnTe and GaAs, but much lower than in DAST in the respective optimum frequency range. A peak THz electric field of 100 kV/cm and a photon conversion efficiency of 11 percent have been achieved at a pump pulse energy of 45 microJ.
A series of nonlinear optical chromophores based on configurationally locked polyene are synthesized, and the single crystal growth from the melt are investigated. The chromophores consist of a π-conjugated hexatriene bridge between the dialkylamino or methoxy electron donors and the dicyanomethylidene electron acceptor. The physical and nonlinear optical properties and the single crystal X-ray structures of these chromophores are characterized. Specifically, the chromophore 2-{3-[2-(4-dimethylaminophenyl)vinyl]-5,5-dimethylcyclohex-2-enylidene}malononitrile (DAT2) exhibits a strong powder second-harmonic generation signal of about 2 orders of magnitude greater than that of urea and a large temperature difference of 80 °C between the melting temperature and the recrystallization temperature. Finally, we demonstrate the growth of single crystalline thin films of DAT2 by a Bridgman-type melt growth technique, which gives a new direction for organic nonlinear optical crystal engineering using melt-growth techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.