Equine piroplasmosis (EP) has not been considered indigenous in The Netherlands.However, following detection of an apparently indigenous subclinical Babesia caballi infection in a horse on Schouwen-Duiveland (an island in the Zeeland Province), a survey was undertaken between May and September 2010 to assess the prevalence of the causative agents of EP in the South West of The Netherlands. Blood samples from 300 randomly selected horses were tested for specific antibodies against Theileria equi and B. caballi using an indirect fluorescence antibody test (IFAT), and for parasite DNA using a specific polymerase chain reaction combined with reverse line blotting (PCR-RLB).
2Twelve of the horses (4%) were seropositive for EP. Of these, nine (75%) were positive (titre ≥1:160) for B. caballi alone and three (25%) were also positive for T. equi. PCR-RLB detected T. equi DNA in five horses (1.6%), two of which were seronegative. Four (1.3%) of the positive horses (three positive for T. equi and one for both B. caballi and T. equi) were considered truly indigenous.During the study, two indigenous ponies from a farm situated outside the sampling area were diagnosed with acute clinical piroplasmosis characterized by severe anaemia and pyrexia.Blood smears showed T. equi-like inclusions in red blood cells, and T. equi infection was confirmed in both ponies by PCR-RLB. The initial subclinical B. caballi infection, the survey results and the two acute clinical EP cases confirmed the autochthonous transmission of B.caballi and T. equi infections in The Netherlands.
It has been demonstrated that the basolateral organic allion (PAH) transporter and the sodium-dependent dicarboxylate transporter of rabbit renal proximal tubules are regulated differentially. A variety of protein kinases has been shown to be involved in the regulation of organic anion transport while dicarboxylate uptake, to which the first is coupled functionally, is not influenced by these kinases. This study was undertaken to elucidate whether respective transporter activities are modulated differentially by protein phosphatases as well. The experiments were performed on isolated S, segments of proximal tubules microdissected from rabbit kidneys without the use of enzymatic agents. 3H-PAH was used as marker substance of the PAH transporter, 14C-glutarate as a marker of the sodium dicarboxylate cotransporter. 30 s tubular uptake measurements were performed. Vanadate (10(-3) M), a selective inhibitor of tyrosine phosphatase, did not reduce PAH uptake significantly, while inhibitors of the serine threonine phosphatases 1 and 2A, okadaic acid and calyculin A (10(-6) M, each) induced a significant decrease of 30 s PAH uptake (by 32.3% +/- 7.9% and 25.6% +/- 6.4%) but not a change in dicarboxylatc transport. These findings indicate that, in addition to a variety of protein kinases, serine threonine phosphatases have a role in the regulation of renal basolateral PAH transport. There is no effect of these phosphatases on basolateral 30s gutaltarate transport. Thus, additional evidence for differential regulation of short-time activiity of the transporters for PAH and dicarboxylates is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.