The pharmaceutical compound carbamazepine (CBZ) is an emerging pollutant in the aquatic environment and may potentially be used as a wastewater marker. In this work, an enzyme-linked immunosorbent assay (ELISA) for the detection of carbamazepine in surface and sewage waters has been developed. The heterogeneous immunoassay is based on a commercially available monoclonal antibody and a novel enzyme conjugate (tracer) that links the hapten via a hydrophilic peptide (triglycine) spacer to horseradish peroxidase. The assay achieves a limit of detection of 24 ng/L and a quantitation range of 0.05-50 microg/L. The analytical performance and figure of merits were compared to liquid chromatography-tandem mass spectrometry after solid-phase extraction. For nine Berlin surface water samples and one wastewater sample, a close correlation of results was observed. A constant overestimation relative to the CBZ concentration of approximately 30% by ELISA is probably caused by the presence of 10,11-epoxy-CBZ and 2-hydroxy-CBZ in the samples. The ELISA displayed cross-reactivities for these compounds of 83% and 14%, respectively. In a first screening of 27 surface water samples, CBZ was detected in every sample with concentrations between 0.05 and 3.2 microg/L. Since no sample cleanup is required, the assay allowed for the determination of carbamazepine with high sensitivity at low costs and with much higher throughput than with conventional methods.
Based on the time-dependent density functional response theory, an approach for the prediction of optical rotations of enantiomers of conformationally flexible molecules was developed. The method was applied successfully for the determination of the absolute configuration of trans-2-fluorocycloalkanol acetates with different ring sizes. The largest deviations between experimental and theoretical [alpha](D) values are 10 deg x [dm x (g/cc)](-1) (about 20% error). These theoretical results suggest that the optical rotation in these molecules is dominated by the local (1R;2R) configuration of the two substituents and that different ring and even axial/equatorial orientations play a less important role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.