The World Health Organization estimates that nearly 500 million malaria tests are performed annually. While microscopy and rapid diagnostic tests (RDTs) are the main diagnostic approaches, no single method is inexpensive, rapid, and highly accurate. Two recent studies from our group have demonstrated a prototype computer vision platform that meets those needs. Here we present the results from two clinical studies on the commercially available version of this technology, the Sight Diagnostics Parasight platform, which provides malaria diagnosis, species identification, and parasite quantification. We conducted a multisite trial in Chennai, India (Apollo Hospital [n ϭ 205]), and Nairobi, Kenya (Aga Khan University Hospital [n ϭ 263]), in which we compared the device to microscopy, RDTs, and PCR. For identification of malaria, the device performed similarly well in both contexts (sensitivity of 99% and specificity of 100% at the Indian site and sensitivity of 99.3% and specificity of 98.9% at the Kenyan site, compared to PCR). For species identification, the device correctly identified 100% of samples with Plasmodium vivax and 100% of samples with Plasmodium falciparum in India and 100% of samples with P. vivax and 96.1% of samples with P. falciparum in Kenya, compared to PCR. Lastly, comparisons of the device parasite counts with those of trained microscopists produced average Pearson correlation coefficients of 0.84 at the Indian site and 0.85 at the Kenyan site.
BackgroundMicroscopy has long been considered to be the gold standard for diagnosis of malaria despite the introduction of newer assays. However, it has many challenges like requirement of trained microscopists and logistic issues. A vision based device that can diagnose malaria, provide speciation and estimate parasitaemia was evaluated.MethodsThe device was evaluated using samples from 431 consented patients, 361 of which were initially screened by RDT and microscopy and later analysed by PCR. It was a prospective, non-randomized, blinded trial. Quantification of parasitaemia was performed by two experienced technicians. Samples were subjected to diagnosis by Sight Dx digital imaging scanning.ResultsThe sensitivity and specificity of the SightDx P1 device for analysed samples were found to be 97.05 and 96.33 %, respectively, when compared to PCR. When compared to microscopy, sensitivity and specificity were found to be 94.4 and 95.6 %, respectively. The device was able to speciate 73.3 % of the PCR Plasmodium falciparum positive samples and 91.4 % of PCR Plasmodium vivax positive samples.ConclusionThe ability of the device to detect parasitaemia as compared with microscopy, was within 50 % in 71.3 % of cases and demonstrated a correlation coefficient of 0.89.
Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of antimalarial drugs, and promote appropriate management of other causes of fever. While several diagnostic tests exist, the need for a rapid and highly accurate malaria assay remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities available, yet they can demonstrate poor performance and accuracy. Automated microscopy platforms have the potential to significantly improve and standardize malaria diagnosis. Based on image recognition and machine learning algorithms, these systems maintain the benefits of light microscopy and provide improvements such as quicker scanning time, greater scanning area, and increased consistency brought by automation. While these applications have been in development for over a decade, recently several commercial platforms have emerged. In this review, we discuss the most advanced computer vision malaria diagnostic technologies and investigate several of their features which are central to field use. Additionally, we discuss the technological and policy barriers to implementing these technologies in low-resource settings world-wide.
Accurate malaria diagnosis is necessary to prevent unnecessary deaths and curb malaria drug resistance related to unnecessary treatment. While numerous diagnostic assays exist, the need for a low-cost, rapid and highly accurate malaria test remains. Here we evaluate the diagnostic performance of a computer vision platform, the Sight Diagnostic P2 device for malaria diagnosis, speciation and parasite quantification. The trial was conducted at two centers on Plasmodium falciparum and Plasmodium vivax samples, using different testing protocols: 374 samples were collected at City Hospital Mangalore India and 167 samples were collected at Lancet Laboratories Johannesburg South Africa. At City Hospital, the device diagnoses were compared to RT-PCR results while at Lancet Laboratories the device diagnoses were compared to a panel of tests provided by the clinic. For identification of malaria, the device demonstrated a sensitivity of 97% and a specificity of 99.5% at City Hospital India, and a sensitivity of 97.8% and a specificity of 97.5% at Lancet Laboratories Johannesburg. For speciation, the device correctly identified 87.5% for Plasmodium Vivax and 93.5% for Plasmodium Falciparum at City Hospital India. Lastly, comparing the device parasite count with that of trained microscopes, produced an average pearsons correlation of 0.87.
Background Once a mainstay of malaria elimination operations, larval source management (LSM)—namely, the treatment of mosquito breeding habitats–has been marginalized in Africa in favour of long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). However, the development of new technologies, and mosquitoes' growing resistance to insecticides used in LLINs and IRS raise renewed interest in LSM. Methods A digitally managed larviciding (DML) operation in three of the seven districts of São Tomé and Príncipe (STP) was launched by the Ministry of Health (MOH) and ZzappMalaria LTD. The operation was guided by the Zzapp system, consisting of a designated GPS-based mobile application and an online dashboard, which facilitates the detection, sampling and treatment of mosquito breeding sites. During the operation, quality assurance (QA) procedures and field management methods were developed and implemented. Results 12,788 water bodies were located and treated a total of 128,864 times. The reduction impact on mosquito population and on malaria incidence was 74.90% and 52.5%, respectively. The overall cost per person protected (PPP) was US$ 0.86. The cost varied between areas: US$ 0.44 PPP in the urban area, and US$ 1.41 PPP in the rural area. The main cost drivers were labour, transportation and larvicide material. Conclusion DML can yield highly cost-effective results, especially in urban areas. Digital tools facilitate standardization of operations, implementation of QA procedures and monitoring of fieldworkers’ performance. Digitally generated spatial data also have the potential to assist integrated vector management (IVM) operations. A randomized controlled trial (RCT) with a larger sample is needed to further substantiate findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.