If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Basin-scale planning is needed to minimize impacts in mega-diverse rivers
By presenting the most comprehensive GlObal geOreferenced Database of Dams to date containing more than 38,000 dams as well as their associated catchments, we enable new and improved global analyses of the impact of dams on society and environment and the impact of environmental change (for example land use and climate change) on the catchments of dams. This paper presents the development of the global database through systematic digitisation of satellite imagery globally by a small team and highlights the various approaches to bias estimation and to validation of the data. The following datasets are provided (a) raw digitised coordinates for the location of dam walls (that may be useful for example in machine learning approaches to dam identification from imagery), (b) a global vector file of the watershed for each dam.
To meet the ambitious objectives of biodiversity and climate conventions, countries and the international community require clarity on how these objectives can be operationalized spatially, and multiple targets be pursued concurrently 1 . To support governments and political conventions, spatial guidance is needed to identify which areas should be managed for conservation to generate the greatest synergies between biodiversity and nature's contribution to people (NCP). Here we present results from a joint optimization that maximizes improvements in species conservation status, carbon retention and water provisioning and rank terrestrial conservation priorities globally. We found that, selecting the top-ranked 30% (respectively 50%) of areas would conserve 62.4% (86.8%) of the estimated total carbon stock and 67.8% (90.7%) of all clean water provisioning, in addition to improving the conservation status for 69.7% (83.8%) of all species considered. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to improve the conservation status of 86.3% of plant and vertebrate species on Earth. Our results provide a global baseline on where land could be managed for conservation. We discuss how such a spatial prioritisation framework can support the implementation of the biodiversity and climate conventions.
Growing conditions for crops such as coffee and wine grapes are shifting to track climate change. Research on these crop responses has focused principally on impacts to food production impacts, but evidence is emerging that they may have serious environmental consequences as well. Recent research has documented potential environmental impacts of shifting cropping patterns, including impacts on water, wildlife, pollinator interaction, carbon storage and nature conservation, on national to global scales. Multiple crops will be moving in response to shifting climatic suitability, and the cumulative environmental effects of these multi-crop shifts at global scales is not known. Here we model for the first time multiple major global commodity crop suitability changes due to climate change, to estimate the impacts of new crop suitability on water, biodiversity and carbon storage. Areas that become newly suitable for one or more crops are Climate-driven Agricultural Frontiers. These frontiers cover an area equivalent to over 30% of the current agricultural land on the planet and have major potential impacts on biodiversity in tropical mountains, on water resources downstream and on carbon storage in high latitude lands. Frontier soils contain up to 177 Gt of C, which might be subject to release, which is the equivalent of over a century of current United States CO 2 emissions. Watersheds serving over 1.8 billion people would be impacted by the cultivation of the climate-driven frontiers. Frontiers intersect 19 global biodiversity hotspots and the habitat of 20% of all global restricted range birds. Sound planning and management of climate-driven agricultural frontiers can therefore help reduce globally significant impacts on people, ecosystems and the climate system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.