If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.
Lakes are key components of biogeochemical and ecological processes, thus knowledge about their distribution, volume and residence time is crucial in understanding their properties and interactions within the Earth system. However, global information is scarce and inconsistent across spatial scales and regions. Here we develop a geo-statistical model to estimate the volume of global lakes with a surface area of at least 10 ha based on the surrounding terrain information. Our spatially resolved database shows 1.42 million individual polygons of natural lakes with a total surface area of 2.67 × 106 km2 (1.8% of global land area), a total shoreline length of 7.2 × 106 km (about four times longer than the world's ocean coastline) and a total volume of 181.9 × 103 km3 (0.8% of total global non-frozen terrestrial water stocks). We also compute mean and median hydraulic residence times for all lakes to be 1,834 days and 456 days, respectively.
Despite significant recent advancements, global hydrological models and their input databases still show limited capabilities in supporting many spatially detailed research questions and integrated assessments, such as required in freshwater ecology or applied water resources management. In order to address these challenges, the scientific community needs to create improved large-scale datasets and more flexible data structures that enable the integration of information across and within spatial scales; develop new and advanced models that support the assessment of longitudinal and lateral hydrological connectivity; and provide an accessible modeling environment for researchers, decision makers, and practitioners. As a contribution, we here present a new modeling framework that integrates hydrographic baseline data at a global scale (enhanced HydroSHEDS layers and coupled datasets) with new modeling tools, specifically a river network routing model (HydroROUT) that is currently under development. The resulting 'hydro-spatial fabric' is designed to provide an avenue for advanced hydro-ecological applications at large scales in a consistent and highly versatile way. Preliminary results from case studies to assess human impacts on water quality and the effects of dams on river fragmentation and downstream flow regulation illustrate the potential of this combined data-andmodeling framework to conduct novel research in the fields of aquatic ecology, biogeochemistry, geo-statistical modeling, or pollution and health risk assessments. The global scale outcomes are at a previously unachieved spatial resolution of 500 m and can thus support local planning and decision making in many of the world's large river basins.
The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930-2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium sized dams and for the need to include waterfalls to establish a baseline of natural fragmentation. Our versatile framework can serve as a component of river fragmentation and connectivity assessments; as a standardized, easily replicable monitoring framework at global and basin scales; and as part of regional dam planning and management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.