Biological similartiy typically decreases with geographical distance. Despite the recent attention to the distance decay relationship, there is no consensus on how the relationship varies across organism groups, geographic gradients and environments. We first conducted a quantitative meta-analysis of 401 distance decay relationships across a wide range of organisms, ecosystems and geographical gradients, and then united the effects of categorical and continuous variables on the rate of distance decay using a general linear model (GLM). As effect sizes we used the similarity at one km distance (initial similarity) and the distance that halves the similarity from its value at one km distance (halving distance). Both the initial similarity and halving distance were significantly affected by variables characterizing the spatial scale, organism properties, study region and ecosystem concerned. The patterns appear robust as the results of meta-analysis and GLM only differed in marginal details. According to GLM with Akaike's information criterion, the most parsimonious models explained 55.3 and 37.6% of variance in initial similarity and halving distance, respectively. Across large scales, similarity was decreasing slightly faster at high latitudes than at low latitudes, while small-scale turnover was higher at low latitudes. We also found significant differences in initial similarity among the realms, with terrestrial systems showing higher small-scale beta diversity. The decrease in community similarity at large scales was higher among organisms that are actively mobile than among passively dispersed organisms. We conclude that regression of similarity against distance unites several ecological phenomena such as dispersal propensity and environmental structuring, and provides an effective approach for gauging the spatial turnover across sites. We also found that the patterns in beta-diversity are highly scale-dependent.
Biological similartiy typically decreases with geographical distance. Despite the recent attention to the distance decay relationship, there is no consensus on how the relationship varies across organism groups, geographic gradients and environments. We first conducted a quantitative meta-analysis of 401 distance decay relationships across a wide range of organisms, ecosystems and geographical gradients, and then united the effects of categorical and continuous variables on the rate of distance decay using a general linear model (GLM). As effect sizes we used the similarity at one km distance (initial similarity) and the distance that halves the similarity from its value at one km distance (halving distance). Both the initial similarity and halving distance were significantly affected by variables characterizing the spatial scale, organism properties, study region and ecosystem concerned. The patterns appear robust as the results of meta-analysis and GLM only differed in marginal details. According to GLM with Akaike's information criterion, the most parsimonious models explained 55.3 and 37.6% of variance in initial similarity and halving distance, respectively. Across large scales, similarity was decreasing slightly faster at high latitudes than at low latitudes, while small-scale turnover was higher at low latitudes. We also found significant differences in initial similarity among the realms, with terrestrial systems showing higher small-scale beta diversity. The decrease in community similarity at large scales was higher among organisms that are actively mobile than among passively dispersed organisms. We conclude that regression of similarity against distance unites several ecological phenomena such as dispersal propensity and environmental structuring, and provides an effective approach for gauging the spatial turnover across sites. We also found that the patterns in beta-diversity are highly scale-dependent.
Like all species, humans have exercised their impulse to perpetuate and propagate themselves. In doing so, we have domesticated landscapes and ecosystems in ways that enhance our food supplies, reduce exposure to predators and natural dangers, and promote commerce. On average, the net benefits to humankind of domesticated nature have been positive. We have, of course, made mistakes, causing unforeseen changes in ecosystem attributes, while leaving few, if any, truly wild places on Earth. Going into the future, scientists can help humanity to domesticate nature more wisely by quantifying the tradeoffs among ecosystem services, such as how increasing the provision of one service may decrease ecosystem resilience and the provision of other services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.