Production of antimicrobial agents through the synthesis of gold nanoparticles using green technology has been extensively made consistent by various researchers; yet, this study uses the flower bud's aqueous extracts of Brassica oleracea (Broccoli) as a reducing agent for chloroauric acid (1 mM). After 30 min of incubation, synthesis of gold nanoparticles (AuNps) was observed by a change in extract color from pale yellow to purple color. Synthesis of AuNps was confirmed in UV-visible spectroscopy at the range of approximately 560 nm. The SEM analysis showed the average nanoparticles size of 12-22 nm. The antimicrobial activity of AuNps was analyzed by subjecting it to human pathogenic bacteria (Grampositive Staphylococcus aureus and Gram-negative Klebsiella pneumonia) and fungi (Aspergillus flavus, Aspergillus niger and Candida albicans) using disc diffusion method. The broccoli-synthesized AuNps showed the efficient antibacterial and antifungal activity of above-mentioned microbes. It was confirmed that AuNps have the best antimicrobial agent compared to the standard antibiotics (Gentamicin and Fluconazole). When the concentrations of AuNps were increased (10, 25, and 50 lg/ml), the sensitivity zone also increased for all the tested microbes. The synthesized AuNps are capable of rendering high antimicrobial efficacy and, hence, have a great potential in the preparation of drugs used against major bacterial and fungal diseases in humans.
Ayurveda is a renowned traditional medicine practiced in India from ancient times and Clitoria ternatea is one such prospective medicinal herb incorporated as an essential constituent in a brain tonic called as medhya rasayan for treating neurological disorders. This work emphasises the significance of the plant as a brain drug there by upholding Indian medicine. The phytochemicals from the root extract were extricated using gas chromatography–mass spectrometry assay and molecular docking against the protein Monoamine oxidase was performed with four potential compounds along with four reference compounds of the plant. This persuades the prospect of C. ternatea as a remedy for neurodegenerative diseases and depression. The in silico assay enumerates that a major compound (Z)-9,17-octadecadienal obtained from the chromatogram with a elevated retention time of 32.99 furnished a minimum binding affinity energy value of −6.5 kcal/mol against monoamine oxidase (MAO-A). The interactions with the amino acid residues ALA 68, TYR 60 and TYR 69 were analogous to the reference compound kaempferol-3-monoglucoside with a least score of −13.90/−12.95 kcal/mol against the isoforms (MAO) A and B. This study fortifies the phytocompounds of C. ternatea as MAO-inhibitors and to acquire a pharmaceutical approach in rejuvenating Ayurvedic medicine.Graphical Abstract
The coronavirus disease, caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is a global health crisis that is being endured with an increased alarm of transmission each day. Though the pandemic has activated innumerable research attention to decipher an antidote, fundamental understanding of the molecular mechanisms is necessary to halt the disease progression. The study focused on comparison of the COVID-19 infected lung tissue gene expression datasets-GSE155241 and GSE150316 with the GEO2R-limma package. The significant up-and downregulated genes were annotated. Further evaluation of the enriched pathways, transcription factors, kinases, noncoding RNAs and drug perturbations revealed the significant molecular mechanisms of the host response. The results revealed a surge in mitochondrial respiration, cytokines, neurodegenerative mechanisms and deprived oxygen, iron, copper, and glucose transport. Hijack of ubiquitination by SARS-CoV-2, hox gene differentiation, histone modification, and miRNA biogenesis were the notable molecular mechanisms inferred. Long non-coding RNAs such as C058791.1, TTTY15 and TPTEP1 were predicted to be efficient in regulating the disease mechanisms. Drugs-F-1566-0341, Digoxin, Proscillaridin and Linifanib that reverse the gene expression signatures were predicted from drug perturbations analysis. The binding efficiency and interaction of proscillaridin and digoxin as obtained from the molecular docking studies confirmed their therapeutic potential. Two overlapping upregulated genes MDH1, SGCE and one downregulated gene PFKFB3 were appraised as potential biomarkers candidates. The upregulation of PGM5, ISLR and ANK2 as measured from their expressions in normal lungs affirmed their possible prognostic biomarker competence. The study explored significant insights for better diagnosis, and therapeutic options for COVID-19.
Lithium carbonate is considered an effective drug against mania and acts as a mood stabilizer. It is found that it enhances antidepressants targeting depression, consequently it is prone to have risk factors that leads to adverse effects. The study is devised in confronting depression under nanoscale by preparing nanocomposites which is a matrix of biopolymer chitosan that encapsulates lithium carbonate by ionic gelation method. This facilitates the drug delivery in a regulated manner targeting the therapeutic action with a limited dosage that lessens the side effects in the course of treatment. The drug polymer interaction was validated by XRD studies, whereas the morphology and size characterization by SEM and zetasizer. The average particle size was determined as 193 ± 0.18 nm with a positive zeta potential of 37.9 mV. The in vitro drug release patterns of nanocomposites were comparatively assayed with the standard lithium carbonate which rendered a controlled release in its profile. The in vivo investigation by animal despair studies bestowed a significant difference in the duration of immobility during force swimming and tail suspension tests. These results were substantiated with histopathological examinations of cerebral cortex region which showed mild cellular edema, degenerative changes and lymphocytic infiltration when compared with the control groups. Consequently, the efficacy of nanocomposites encased with lithium carbonate fortifies targeted drug delivery and restrains adverse effects by endorsing it as a lead compound in brain drug developmental research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.