Motivation Current studies in extractive question answering (EQA) have modeled the single-span extraction setting, where a single answer span is a label to predict for a given question-passage pair. This setting is natural for general domain EQA as the majority of the questions in the general domain can be answered with a single span. Following general domain EQA models, current biomedical EQA (BioEQA) models utilize the single-span extraction setting with post-processing steps. Results In this paper, we investigate the question distribution across the general and biomedical domains and discover biomedical questions are more likely to require list-type answers (multiple answers) than factoid-type answers (single answer). This necessitates the models capable of producing multiple answers for a question. Based on this preliminary study, we propose a sequence tagging approach for BioEQA, which is a multi-span extraction setting. Our approach directly tackles questions with a variable number of phrases as their answer and can learn to decide the number of answers for a question from training data. Our experimental results on the BioASQ 7 b and 8 b list-type questions outperformed the best-performing existing models without requiring post-processing steps. Availability Source codes and resources are freely available for download at https://github.com/dmis-lab/SeqTagQA Supplementary information Supplementary data are available at Bioinformatics online.
Background: Masked language modelling approaches have enjoyed success in improving benchmark performance across many general and biomedical domain natural language processing tasks, including biomedical relationship extraction (RE). However, the recent surge in both the number of novel architectures and the volume of training data they utilise may lead us to question whether domain specific pretrained models are necessary. Additionally, recent work has proposed novel classification heads for RE tasks, further improving performance. Here, we perform ablations over several pretrained models and classification heads to try to untangle the perceived benefits of each. Methods: We use a range of string preprocessing strategies, combined with Bidirectional Encoder Representations from Transformers (BERT), BioBERT and RoBERTa architectures to perform ablations over three RE datasets pertaining to drug-drug and chemical protein interactions, and general domain relationship extraction. We explore the use of the RBERT classification head, compared to a simple linear classification layer across all architectures and datasets. Results: We observe a moderate performance benefit in using the BioBERT pretrained model over the BERT base cased model, although there appears to be little difference when comparing BioBERT to RoBERTa large. In addition, we observe a substantial benefit of using the RBERT head on the general domain RE dataset, but this is not consistently reflected in the biomedical RE datasets. Finally, we discover that randomising the token order of training data does not result in catastrophic performance degradation in our selected tasks. Conclusions: We find a recent general domain pretrained model performs approximately the same as a biomedical specific one, suggesting that domain specific models may be of limited use given the tendency of recent model pretraining regimes to incorporate ever broader sets of data. In addition, we suggest that care must be taken in RE model training, to prevent fitting to non-syntactic features of datasets.
Most of today's systems for socio-political event detection are text-based, while an increasing amount of information published on the web is multi-modal. We seek to bridge this gap by proposing a method that utilizes existing annotated unimodal data to perform event detection in another data modality, zero-shot. Specifically, we focus on protest detection in text and images, and show that a pretrained vision-and-language alignment model (CLIP) can be leveraged towards this end. In particular, our results suggest that annotated protest text data can act supplementarily for detecting protests in images, but significant transfer is demonstrated in the opposite direction as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.