Spiking Neural Networks (SNN) are thirdgeneration Artificial Neural Networks (ANN) which are close to the biological neural system. In recent years SNN has become popular in the area of robotics and embedded applications, therefore, it has become imperative to explore its real-time and energy-efficient implementations. SNNs are more powerful than their predecessors because they encode temporal information and use biologically plausible plasticity rules. In this paper, a simpler and computationally efficient SNN model using FPGA architecture is described. The proposed model is validated on a Xilinx Virtex 6 FPGA and analyzes a fully connected network which consists of 800 neurons and 12,544 synapses in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.