Deformation studies at grain level have been performed in order to model how individual crystals in a polycrystalline material deform. The experiment was carried out by plane-strain compression of a high-purity polycrystalline aluminium with columnar grain structure with near 100 fibre texture parallel to the constrained direction in the channel die. This structure was chosen to allow a fully three-dimensional characterization of the grain structure. The grain orientations were mapped by orientation image microscopy, as the directionally solidified material was deformed in steps of 10% to a total height reduction of 40%. The grains were found either to show nearly uniform rotations or to split into two types of deformation bands, either with repeating orientation fields or with non-repeating orientation fields. The Taylor model and the finite-element method (FEM) were, as usual, quite successful in predicting the average deformation texture, but the Taylor model failed totally to predict the rotation of individual grains. The FEM was more successful in predicting the individual grain rotations but did not, as in a previous study, predict the morphology of the deformation bands. The significant discovery, made here, was that it appeared possible to model the local deformation at a grain scale, from the observed individual deviations of the grain rotations from those predicted if each grain underwent just the plane-strain conditions imposed on the sample. Plastic work rates were computed allowing four shears (two shears in each of the two contact planes) that are compatible with the channel-die geometry. It was found that in all the 'hard' grains (those with high Taylor factors), the additional shears (in type and magnitude) that minimized the plastic energy dissipation rate were the same shears that were needed to match the observed grain rotations. Adjacent Taylor 'soft' grains were found to have been subjected to the additional shears imposed by their neighbouring hard grains. This was true even when these shears raised the plastic work of the soft grains. This effect was most marked when the soft grains were small in size. These additional shears found by this plastic work analysis were consistent with the observed additional shear seen in the overall shape change of the sample. The grains forming non-repeating orientation fields had low initial Taylor factors and were surrounded by high-Taylor-factor grains, usually of larger size, but which had adopted somewhat different extra shears. The grains showing repeating orientation
The deterministic mesoscopic mechanism of ferroelectric domain nucleation is probed at a single atomically‐defined model defect: an artificially fabricated bicrystal grain boundary (GB) in an epitaxial bismuth ferrite film. Switching spectroscopy piezoresponse force microscopy (SS‐PFM) is used to map the variation of local hysteresis loops at the GB and in its immediate vicinity. It is found that the the influence of the GB on nucleation results in a slight shift of the negative nucleation bias to larger voltages. The mesoscopic mechanisms of domain nucleation in the bulk and at the GB are studied in detail using phase‐field modeling, elucidating the complex mechanisms governed by the interplay between ferroelectric and ferroelastic wall energies, depolarization fields, and interface charge. The combination of phase‐field modeling and SS‐PFM allows quantitative analysis of the mesoscopic mechanisms for polarization switching, and hence suggests a route for unraveling the mechanisms of polarization switching at a single defect level and ultimately optimizing materials properties through microstructure engineering.
Vibrio cholerae is an aerobic, sucrose fermentative Gram-negative bacterium that generally prevails in the environment. Pathogenic V. cholerae is well-known as causative agent of acute diarrhea. Apart from enteric infections, V. cholerae may also cause other diseases. However, their role in causing extraintestinal infections is not fully known as it needs proper identification and evaluation. Four cases of extraintestinal infections due to V. cholerae non-O1/non-O139 have been investigated. The isolates were screened for phenotypic and genetic characteristics with reference to their major virulence genes. Serologically distinct isolates harbored rtx, msh, and hly but lacked enteric toxin encoding genes that are generally present in toxigenic V. cholerae. Timely detection of this organism can prevent fatalities in hospital settings. The underlying virulence potential of V. cholerae needs appropriate testing and intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.