The wear debris from conventional brake pads is a growing source of environmental contamination that often leads to life-threatening diseases for human beings. Though the emerging organic brake pads show potential to serve as an eco-friendly alternative, their mechanical and tribological properties are not adequate to withstand the demands of high-wear resistance of a functioning braking system under regular use. Metal matrix composites have served as an optimal solution with minimal environmental pollution and appreciable physical properties. Owing to the popularity of aluminium metal matrix composites, the present study is based on the fabrication and characterization of SiC-reinforced LM6 alloy through stir casting methodologies for evaluating its worthiness in application as a brake pad material. Microstructural, compositional, and phase characterizations were executed through optical micrography, X-ray diffraction, and energy-dispersive X-ray spectroscopy analysis. Although mechanical properties were evaluated through surface hardness investigation, parallel thermal properties were estimated through thermal conductivity evaluation. Finally, the execution of tribological analysis and precise microstructural observations of wear track at ambient and elevated temperatures helped in establishing the datum that the fabricated metal matrix composite (MMC) is a reliable brake pad material alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.