Producing items that are of both high quality and long lasting is a difficult task for companies right now. There is a huge need for a wide range of engineering materials in today’s technologically advanced globe. The strength and qualities of the material determine the amount of material that may be used. Due to its excellent mechanical qualities and low density, aluminum-7075 alloy is mostly employed in transportation applications such as aerospace, marine, and vehicle production. This study addresses the fabrication and characterization of Al7075 semisolid metal matrix composite (MMC) reinforced with graphene nanoparticles. Samples are made with and without stirring graphene in aluminum-7075 at various temperatures of 800°, 830°, 860°, 890°, and 920°C. At these temperatures, the material is semisolid, so graphene is introduced and stirred into the molten liquid. The specimens meet the requirements of the American Society for Testing and Material (ASTM). The hardness, tensile strength, impact strength, and compression strength of various materials are evaluated and compared. Temperature lowers tensile strength, hardness, and compression. A scanning electron microscope (SEM) is used to examine the microstructure. The specimen is evaluated using ANSYS. Specimens with stirring have better mechanical characteristics. Graphene has high hardness and strength.
The wear debris from conventional brake pads is a growing source of environmental contamination that often leads to life-threatening diseases for human beings. Though the emerging organic brake pads show potential to serve as an eco-friendly alternative, their mechanical and tribological properties are not adequate to withstand the demands of high-wear resistance of a functioning braking system under regular use. Metal matrix composites have served as an optimal solution with minimal environmental pollution and appreciable physical properties. Owing to the popularity of aluminium metal matrix composites, the present study is based on the fabrication and characterization of SiC-reinforced LM6 alloy through stir casting methodologies for evaluating its worthiness in application as a brake pad material. Microstructural, compositional, and phase characterizations were executed through optical micrography, X-ray diffraction, and energy-dispersive X-ray spectroscopy analysis. Although mechanical properties were evaluated through surface hardness investigation, parallel thermal properties were estimated through thermal conductivity evaluation. Finally, the execution of tribological analysis and precise microstructural observations of wear track at ambient and elevated temperatures helped in establishing the datum that the fabricated metal matrix composite (MMC) is a reliable brake pad material alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.