To enhance the moisture damage performance of hot mix asphalt (HMA), treating the aggregate surface with a suitable additive was a more convenient approach. In this research, two types of aggregate modifiers were used to study the effect of moisture damage on HMA. Three different aggregate sources were selected based on their abundance of use in HMA. To study the impact of these aggregate modifiers on moisture susceptibility of HMA, the indirect tensile strength test and indirect tensile modulus test were used as the performance tests. Moisture conditioning of specimens was carried out to simulate the effect of moisture on HMA. The prepared samples’ tensile strength ratio (TSR) and stiffness modulus (Sm) results indicated a decrease in the strength of the HMA after moisture conditioning. After treating the aggregate surface with additives, an improvement was seen in dry and wet strength and stiffness. Moreover, an increasing trend was observed for both additives. The correlation between TSR and strength loss reveals a strong correlation (R2 = 0.7219). Also, the two additives indicate increased wettability of asphalt binder over aggregate, thus improving the adhesion between aggregate and asphalt binder.
Traffic delays are not wholly new and are a well-known problem that impacts many of the world’s populations through disruptions and pollution. The rising urbanization and quantity of powered road vehicles necessitate a greater traffic control demand to maintain flow and avoid jams. In order to understand the notion of sustainable transportation, this study first examined sustainable transportation systems. This research then assessed Pakistan’s present transportation infrastructure and urban transportation to find the most reasonable and sustainable alternative to reduce congestion. The Taxila intersection was utilized as a pilot study area because of its vicinity to Pakistan’s leading economic hubs (i.e., industrial estates and the twin cities of Islamabad and Rawalpindi). The study used multi-criteria decision making (MCDM) techniques, including the fuzzy AHP, TOPSIS, VIKOR, and traffic simulation software, to determine the optimal solution for a more sustainable transportation system, and reducing traffic congestion. A pairwise comparison of the criteria and alternatives was made using a survey. This survey was used to look into the perspectives of various stakeholders and experts. The outcomes of the fuzzy AHP-TOPSIS and fuzzy AHP-VIKOR revealed that a flyover is the best alternative. In contrast, the best alternative, according to the software was a parking area. Ultimately, we assessed our results using the literature, and site observation, and concluded that a parking area would be the most sustainable alternative in the Taxila intersection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.